Reversible electrochemical extraction using cathode materials shows great potential for selective lithium extraction from low-concentration aqueous sources. However, ion selectivity and structural distortion challenges have limited its application to sources like seawater. Here, we synthesize Nb-modified LiMnO using a simple wet chemistry coating method, introducing minimal structural defects in the LiMnO materials and enhancing stability with a LiNbO coating to limit lattice expansion. Additionally, operando XRD reveals reduced lattice distortion during Li intercalation/deintercalation. Electrochemical tests show that the composite achieves high stability (over 100 cycles), fast Li electrosorption, and robust ion selectivity. Furthermore, utilizing a fluidic electrochemical approach, we extract lithium from simulated seawater (3.5 ppm of Li), achieving an absorption capacity of 13.8 mg g and an energy consumption of 9.96 Wh g.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c04330DOI Listing

Publication Analysis

Top Keywords

lattice distortion
8
fluidic electrochemical
8
lithium extraction
8
ion selectivity
8
restraining lattice
4
distortion limno
4
limno facilitates
4
facilitates fluidic
4
electrochemical
4
electrochemical lithium
4

Similar Publications

Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.

View Article and Find Full Text PDF

Reversible electrochemical extraction using cathode materials shows great potential for selective lithium extraction from low-concentration aqueous sources. However, ion selectivity and structural distortion challenges have limited its application to sources like seawater. Here, we synthesize Nb-modified LiMnO using a simple wet chemistry coating method, introducing minimal structural defects in the LiMnO materials and enhancing stability with a LiNbO coating to limit lattice expansion.

View Article and Find Full Text PDF

In halide perovskites, photocarriers can have strong polaronic interactions with point defects. For iodide-deficient MAPbI, we found that the Fermi level can shift significantly by 0.6-0.

View Article and Find Full Text PDF

Boosting Carrier Mobility in 2D Layered Perovskites for High-Performance UV Photodetector.

Small Methods

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, P. R. China.

2D hybrid perovskites have attracted great interest due to their promising potential in photodetectors. The phase structure, dielectric, and excitonic properties in 2D perovskites play a pivotal role in the performance of the corresponding optoelectronic device. Here a lattice anchoring method is demonstrated to boost carrier mobility in 2D perovskites by tailoring large organic spacer cation layers.

View Article and Find Full Text PDF

Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the luminescence of DPs exhibits thermal quenching at high temperatures, which severely affects their further application. Herein, we synthesized the rare earth Dy and transition metal Mn codoped CsNaYCl rare earth DPs and characterized the optical properties using temperature-dependent photoluminescence spectra and time-resolved photoluminescence decay profiles at different temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!