Contrasting Summertime Trends in Vehicle Combustion Efficiency in Los Angeles, CA and Salt Lake City, UT.

Environ Sci Technol

Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States.

Published: January 2025

Policy interventions and technological advances are mitigating emissions of air pollutants from motor vehicles. As a result, vehicle fleets are expected to progressively combust fuel more efficiently, with a declining ratio of carbon monoxide to carbon dioxide (CO/CO) in their emissions. We assess trends in traffic combustion efficiency in Los Angeles (LA) and Salt Lake City (SLC) by measuring changes in summertime on-road CO/CO between 2013 and 2021 using mobile observations. Our data show a reduction in CO/CO in LA, indicating an improvement in combustion efficiency that likely resulted from stringent regulation of CO emissions. In contrast, we observed an increase in CO/CO values in SLC. While slower progress in SLC compared to LA may be partially due to a later adoption of vehicle emission regulations in Utah compared to California, differing driving conditions and fleet composition may also be playing a role. This is evidenced by increased CO/CO in LA during the COVID-19 pandemic, which led to faster driving speeds and changes to the fleet composition. Our results demonstrate the success of California's CO-reducing policy interventions and illustrate the impacts of traffic characteristics on vehicle combustion efficiency and air pollutant emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c11701DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755713PMC

Publication Analysis

Top Keywords

combustion efficiency
16
vehicle combustion
8
efficiency los
8
los angeles
8
angeles salt
8
salt lake
8
lake city
8
policy interventions
8
fleet composition
8
co/co
5

Similar Publications

Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C).

View Article and Find Full Text PDF

Packed columns are commonly used in post-combustion processes to capture CO emissions by providing enhanced contact area between a CO-laden gas and CO-absorbing solvent. To study and optimize solvent-based post-combustion carbon capture systems (CCSs), computational fluid dynamics (CFD) can be used to model the liquid-gas countercurrent flow hydrodynamics in these columns and derive key determinants of CO-capture efficiency. However, the large design space of these systems hinders the application of CFD for design optimization due to its high computational cost.

View Article and Find Full Text PDF

Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have gained significant attention for ability to convert mechanical energy into electrical energy. As the applications of TENG devices expand, their safety and reliability becomes priority, particularly where there is risk of fire or spontaneous combustion. Flame-retardant materials can be employed to address these safety concerns without compromising the performance and efficiency of TENGs.

View Article and Find Full Text PDF

Robust Spray Combustion Enabling Hierarchical Porous Carbon-Supported FeCoNi Alloy Catalyst for Zn-Air Batteries.

ACS Appl Mater Interfaces

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.

Rechargeable Zn-air batteries (RZABs) are poised for industrial application, yet they require low-cost, high-performance catalysts that efficiently facilitate both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The pivotal challenge lies in designing multimetal active sites and optimizing the carbon skeleton structure to modulate catalyst activity. In this study, we introduce a novel hierarchical porous carbon-supported FeCoNi bifunctional catalyst, synthesized via a spray combustion method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!