The development of new photochromic systems is motivated by the possibility of controlling the properties and functions of materials with high spatial and temporal resolution in a reversible manner. While there are several classes of photoswitches operating in solution, the design of systems efficiently operating in the solid state remains highly challenging, mainly due to limitations related to confinement effects. Triaryl-hydrazones represent a relatively new subclass of bistable hydrazone photoswitches exhibiting efficient / photochromism in solution. As "large volume" photoswitches, they have been anticipated to display only limited solid-state photoswitching. Here, we show that the isomers of newly prepared triaryl-hydrazones containing a perfluorinated hydrazine phenyl ring (PHZs) exhibit impressive solid-state photochromism with an unexpected light-induced red-shift of the absorption maximum. Based on (time-dependent) density functional theory calculations, a photoswitching reaction mechanism involving the excited state intramolecular proton transfer has been proposed, which rationalizes the observed red-shift in absorption by the formation of a metastable proton transfer structure. Advanced experimental techniques including X-ray diffraction, solid-state NMR and EPR spectroscopy, and confocal Raman microscopy corroborated the suggested mechanism and revealed that the observed photochromism is a superficial phenomenon. This atypical photochromic behavior of PHZs can also be realized by using visible light and in the form of thin films, which manifests their potential use in optics and optoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c12510 | DOI Listing |
Chem Sci
December 2024
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.
View Article and Find Full Text PDFTurk J Chem
December 2024
Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria.
In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
Bacterial denitrification is a main pathway for soil NO sinks, which is crucial for assessing and controlling NO emissions. Biobased polyhydroxyalkanoate (PHA) microplastic particles (MPs) degrade slowly in conventional environments, remaining inert for extended periods. However, the impacts of PHA microplastic aging on the bacterial NO sink capacity before degradation remain poorly understood.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
Direct carbonylation of CH to CHCOOH provides a promising pathway for upgrading of natural gas to transportable liquid chemicals, in which high-efficiency CH activation and controllable C-C coupling are both critical but challenging. Herein, we report that highly efficient photo-driven carbonylation of CH with CO and O to CHCOOH is achieved over MoS-confined Rh-Zn atomic-pair in conjunction with TiO. It delivers a high CHCOOH productivity of 152.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!