A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning-Assisted High-Donor-Number Electrolyte Additive Screening toward Construction of Dendrite-Free Aqueous Zinc-Ion Batteries. | LitMetric

Machine Learning-Assisted High-Donor-Number Electrolyte Additive Screening toward Construction of Dendrite-Free Aqueous Zinc-Ion Batteries.

ACS Nano

National Innovation Center for Industry-Education Integration of Energy Storage, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China.

Published: January 2025

The utilization of electrolyte additives has been regarded as an efficient strategy to construct dendrite-free aqueous zinc-ion batteries (AZIBs). However, the blurry screening criteria and time-consuming experimental tests inevitably restrict the application prospect of the electrolyte additive strategy. With the rise of artificial intelligence technology, machine learning (ML) provides an avenue to promote upgrading of energy storage devices. Herein, we proposed an intriguing ML-assisted method to accelerate the development efficiency of electrolyte additives on dendrite-free AZIBs. Concretely, we selected the Gutmann donor number (DN value) as a screen parameter, which can reflect the interaction between solvent molecules and ions, and proposed an integrated ML model that can predict the DN values of organic molecules via molecular fingerprints, thereby achieving the screening of electrolyte additives. Then, combined with experimental tests and theoretical calculations, the influence law of three additive molecules with different DN values on the thermodynamic stability of the Zn anode and its corresponding optimization mechanisms were revealed; the DN values of the additives are in positive correlation with the electrochemical performance of the Zn anode. Especially, an isopropyl alcohol (IPA) additive with a high DN value (36) integrated with various Zn-based cells presented a superior electrochemical performance, including a high calendar life (1500 h), a stable Coulombic efficiency (99% within 450 cycles), and a favorable cycling retention. This work pioneers ML techniques for predicting DN values for electrolyte additives, offering a compelling investigation method for the investigation of AZIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c13312DOI Listing

Publication Analysis

Top Keywords

electrolyte additives
16
electrolyte additive
8
dendrite-free aqueous
8
aqueous zinc-ion
8
zinc-ion batteries
8
experimental tests
8
electrochemical performance
8
electrolyte
6
additives
5
machine learning-assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!