Excellent Energy Storage and Charge-Discharge Performance in (PbCa)(ZrSn)O Antiferroelectric Ceramics.

ACS Appl Mater Interfaces

State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, School of Electromechanical Engineering and School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China.

Published: January 2025

Lead-based antiferroelectric (AFE) ceramics have the advantages of high power density, fast charge and discharge speed, and the electric-field-induced AFE-FE phase transition, making them one of the potential dielectric energy storage materials. However, the energy storage density still needs to be improved. In this work, (PbCa) (ZrSn)O (PCZS, = 0.01, 0.02, 0.03 and 0.04) antiferroelectric ceramics were successfully prepared using the solid-state reaction and two-step sintering methods. The results showed that as the Ca content increased, the average grain size decreased from 1.38 ± 0.42 to 1.06 ± 0.35 μm and the dielectric breakdown strength increased from 270 to 325 kV/cm for ceramics with 80 μm in thickness. Two kinds of superlattice structures (F-point with 1/2{ooo} patterns and incommensurate modulation structure (IMS) pattern with 1/{110} patterns) were observed, indicating the typical octahedral tilting-related AFE structure. The (PbCa) (ZrSn)O bulk ceramics, due to the refined polarization-electric field hysteresis loop of the IMS, achieved a maximum recoverable energy storage density () of 6.61 J/cm with an efficiency (η) of 84.01%. In the circuit of charge-discharge to a load, an ultrahigh power density () of 276.67 MW/cm and a discharged energy density () of 6.24 J/cm were obtained in PCZS2 bulk ceramics at 290 kV/cm. The high and indicate that PCZS ceramics offer potential applications in the field of pulse-power electric devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c14385DOI Listing

Publication Analysis

Top Keywords

energy storage
16
antiferroelectric ceramics
8
power density
8
storage density
8
pbca zrsno
8
bulk ceramics
8
ceramics
7
density
5
excellent energy
4
storage
4

Similar Publications

Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.

Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.

View Article and Find Full Text PDF

Unlabelled: In recent years, sugar alcohols have gained significant attention as organic phase change materials (PCMs) for thermal energy storage due to their comparably high thermal storage densities up to 350 J/g. In a computational study, outstandingly high values of up to ~ 450-500 J/g have been postulated for specific higher-carbon sugar alcohols. These optimized structures feature an even number of carbon atoms in the backbone and a stereochemical configuration in which all hydroxyl groups are in an 1,3--relationship, as found in the natural hexitol d-mannitol.

View Article and Find Full Text PDF

This study introduces the first metal organic framework using ammelide as the organic ligand, showcasing stability in boiling water and high sensitivity in detecting dichromate ions.

View Article and Find Full Text PDF

Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.

View Article and Find Full Text PDF

Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!