Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Published: December 2024

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA. In this study, we aimed to develop a mouse model to investigate cccDNA formation and maintenance. We infected C57BL/6 mice with recombinant adeno-associated virus (rAAV) carrying a 1.3-overlength HBV genome (genotype C) and collected liver tissue at various time points to assess cccDNA levels and viral replication. Our results demonstrated the successful establishment of a chronic hepatitis B mouse model using rAAV-HBV1.3, which supported persistent HBV infection with sustained cccDNA expression in hepatocytes. Serum levels of HBsAg and HBeAg were elevated for up to 12 weeks, while alanine transaminase (ALT) levels remained within the normal range, indicating limited liver damage during this period. We confirmed HBV DNA expression in hepatocytes, and importantly, cccDNA was detected using qPCR after Plasmid-Safe ATP-Dependent DNase treatment, which selectively removes non-cccDNA forms. Additionally, Southern blot analysis confirmed the presence of cccDNA isolated using the Hirt extraction method. This established model provides a valuable platform for studying the long-term maintenance of cccDNA in chronic HBV infection and offers an important tool for testing novel therapeutic strategies aimed at targeting cccDNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680097PMC
http://dx.doi.org/10.3390/v16121890DOI Listing

Publication Analysis

Top Keywords

mouse model
12
hbv infection
12
cccdna
10
chronic hepatitis
8
covalently closed
8
closed circular
8
circular dna
8
chronic hbv
8
viral replication
8
cccdna formation
8

Similar Publications

N-acetyl-tryptophan in Acute Kidney Injury after Cardiac Surgery.

J Am Soc Nephrol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.

Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.

View Article and Find Full Text PDF

Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.

View Article and Find Full Text PDF

Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

Proc Natl Acad Sci U S A

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!