The research conducted in this preclinical study assesses QazCovid-live, a live attenuated COVID-19 vaccine created in Kazakhstan, by conducting preclinical evaluations of safety, immunogenicity, and allergenicity in various animal models, including mice, rats, hamsters, and guinea pigs. The vaccine, developed by attenuating SARS-CoV-2 via numerous Vero cell passages, had no significant adverse effects in acute and subacute toxicity assessments, even at elevated dosages. Allergenicity testing indicated the absence of both immediate and delayed hypersensitivity reactions. Immunogenicity evaluations revealed strong virus-neutralizing antibody responses, especially following intranasal and intratracheal delivery. Studies on reversibility and transmission further validated the vaccine's stability and non-pathogenicity. The data indicate that QazCovid-live is safe, immunogenic, and prepared for clinical trials, presenting a potential strategy for COVID-19 prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728456 | PMC |
http://dx.doi.org/10.3390/vaccines12121401 | DOI Listing |
Nanotechnology
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.
View Article and Find Full Text PDFJ Immunol Res
January 2025
Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
In recent years, chimeric antigen receptor T-cell (CAR-T) therapy has made groundbreaking progress in the treatment of various cancer types, particularly hematological malignancies. In the meantime, various preclinical and clinical studies have extensively explored dual-target CAR-T therapies which can be designed to recognize two antigens simultaneously based on the immunophenotype of tumor cells. Compared with single-target CAR-T approach, dual-target CAR-T therapies demonstrate varying degrees of superior antitumor CAR effects, prevent antigen escape and relapse, reduce on-target off-tumor effects, and ensure durable responses in different types of cancer.
View Article and Find Full Text PDFRev Inst Med Trop Sao Paulo
January 2025
Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica de Moléstias Infecciosas e Parasitárias, Laboratório de Investigação Médica em Imunologia (LIM-48), SSão Paulo, São Paulo, Brazil.
Immunocompromised individuals were considered high-risk for severe disease due to SARS COV-2 infection. This study aimed to describe the safety of two doses of COVID-19 adsorbed inactivated vaccine (CoronaVac; Sinovac/Butantan), followed by additional doses of mRNA BNT162b2 (Pfizer/BioNTech) in immunocompromised (IC) adults, compared to immunocompetent/healthy (H) individuals. This phase 4, multicenter, open label study included solid organ transplant and hematopoietic stem cell transplant recipients, cancer patients and people with inborn errors of immunity with defects in antibody production, rheumatic, end-stage chronic kidney or liver disease, who were enrolled in the IC group.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!