Background/objectives: Humoral immunity directed against neuraminidase (NA) of the influenza virus may soften the severity of infection caused by new antigenic variants of the influenza viruses. Evaluation of NA-inhibiting (NI) antibodies in combination with antibodies to hemagglutinin (HA) may enhance research on the antibody response to influenza vaccines.
Methods: The study examined 64 pairs of serum samples from patients vaccinated with seasonal inactivated trivalent influenza vaccines (IIVs) in 2018 according to the formula recommended by the World Health Organization (WHO) for the 2018-2019 flu season. Antibodies against drift influenza viruses A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09 and A/Brisbane/34/2018(H3N2) were studied before vaccination and 21 days after vaccination. To assess NI antibodies, we used an enzyme-linked lectin assay (ELLA) with pairs of reassortant viruses A/H6N1 and A/H6N2. Anti-HA antibodies were detected using a hemagglutination inhibition (HI) test. The microneutralization (MN) test was performed in the MDCK cell line using viruses A/H6N1 and A/H6N2.
Results: Seasonal IIVs induce a significant immune response of NI antibodies against influenza A/H1N1pdm09 and A/H3N2 viruses. A significantly reduced 'herd' immunity to drift influenza A/H1N1pdm09 and A/H3N2 viruses was shown, compared with previously circulating strains. This reduction was most pronounced in strains possessing neuraminidase N2. Seasonal IIVs caused an increase in antibodies against homologous and drifted viruses; however, an increase in antibodies to drifting viruses was observed more often among older patients. The level of NI antibodies for later A/H1N1pdm09 virus in response to IIVs was statistically significantly lower among younger people. After IIV vaccination, the percentage of individuals with HI antibody levels ≥ 1:40 and NI antibody levels ≥ 1:20 was 32.8% for drift A/H1N1pdm09 virus and 17.2% for drift A/H3N2 virus. Antisera containing HI and NI antibodies exhibited neutralizing properties in vitro against viruses with unrelated HA of the H6 subtype.
Conclusions: Drift A/H1N1pdm09 and A/H3N2 viruses demonstrated significantly lower reactivity to HI and NI antibodies against early influenza viruses. In response to seasonal IIVs, the level of seroprotection has increased, including against drift influenza A viruses, but protective antibody levels against A/H1N1pdm09 have risen to a greater extent. A reduced immune response to the N1 protein of the A/H1N1pdm09 drift virus was obtained in individuals under 60 years of age. Based on our findings, it is hypothesized that in the cases of a HA mismatch, vaccination against N1-containing influenza viruses may be necessary for individuals under 60, while broader population-level vaccination against N2-containing viruses may be required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/vaccines12121334 | DOI Listing |
Drugs Aging
January 2025
University Hospitals of Cleveland, 11100 Euclid Ave, Mailstop 5083, Cleveland, OH, 44106, USA.
Influenza, a highly contagious respiratory viral illness, poses significant global health risks, particularly affecting older and those with chronic health conditions. Influenza viruses, primarily types A and B, are responsible for seasonal human infections and exhibit a propensity for antigenic drift and shift, contributing to seasonal epidemics and pandemics. The severity of influenza varies, but severe cases often lead to pneumonia, acute respiratory distress syndrome, and multiorgan failure.
View Article and Find Full Text PDFPLOS Glob Public Health
December 2024
[This corrects the article DOI: 10.1371/journal.pgph.
View Article and Find Full Text PDFNat Commun
January 2025
School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.
East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.
View Article and Find Full Text PDFAnalyst
January 2025
The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
Developing low-cost self-service portable sensors to detect viruses is an important step in combating the spread of viral outbreaks. Here, we describe the development of an aptamer-free paper-based molecularly imprinted sensor for the instrument-free detection of influenza virus A (H5N1). In this sensor, Whatman paper loaded with FeO nanoparticles (WP@FeO) was prepared as a substrate upon which silicon imprinting occurred in the presence of the template virus H5N1.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Science, The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Mahidol University, Nakhon Pathom, Thailand.
Crocodilians are susceptible to a range of virus infection including influenza A virus (IAV). However, little is known about the ecology and epidemiology of IAV in crocodile species. This study aimed to investigate IAV infection in farmed Siamese crocodiles in central Thailand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!