AI Article Synopsis

  • The study develops a method for detecting debonding defects in concrete-filled steel tube (CFST) structures using piezoelectric sensors and wave analysis.
  • Experimental and numerical tests compare the effectiveness of flat and oblique measurement methods, finding that flat measurements are best for height detection, while oblique measurements excel at length detection.
  • A new mathematical model linking wavelet packet energy to debonding size enhances the detection process, aiding in maintenance and repair of CFST structures through improved accuracy in defect analysis.

Article Abstract

This study presents a comprehensive method for detecting debonding defects in concrete-filled steel tube (CFST) structures using wave propagation analysis with externally attached piezoelectric ceramic sensors. Experimental tests and numerical simulations were conducted to evaluate the sensitivity and accuracy of two measurement techniques-the flat and oblique measurement methods-in detecting debonding defects of varying lengths and heights. The results demonstrate that the flat measurement method excels in detecting debonding height, while the oblique method is more effective for detecting debonding length. A normalized judgment index (DI) was introduced to quantify the correlation between debonding characteristics and the detected signal amplitude, revealing the significant influence of sensor spacing on detection accuracy. Furthermore, a mathematical model based on wavelet packet energy analysis was developed to establish a linear relationship between wavelet packet energy and debonding size. This model offers a scientific foundation for the quantitative detection of debonding defects and provides a new approach to the health monitoring of CFST structures. The integrated use of both measurement techniques enhances detection precision, enabling both qualitative and quantitative defect analysis, which can significantly guide the maintenance and repair of CFST structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680037PMC
http://dx.doi.org/10.3390/s24248222DOI Listing

Publication Analysis

Top Keywords

debonding defects
16
detecting debonding
16
cfst structures
12
detection debonding
8
defects concrete-filled
8
concrete-filled steel
8
wavelet packet
8
packet energy
8
debonding
7
detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!