A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and Evaluation of a Cloud Computing System for Real-Time Measurements in Polarization-Independent Long-Range DAS Based on Coherent Detection. | LitMetric

CloudSim is a versatile simulation framework for modeling cloud infrastructure components that supports customizable and extensible application provisioning strategies, allowing for the simulation of cloud services. On the other hand, Distributed Acoustic Sensing (DAS) is a ubiquitous technique used for measuring vibrations over an extended region. Data handling in DAS remains an open issue, as many applications need continuous monitoring of a volume of samples whose storage and processing in real time require high-capacity memory and computing resources. We employ the CloudSim tool to design and evaluate a cloud computing scheme for long-range, polarization-independent DAS using coherent detection of Rayleigh backscattering signals and uncover valuable insights on the evolution of the processing times for a diverse range of Virtual Machine (VM) capacities as well as sizes of blocks of processed data. Our analysis demonstrates that the choice of VM significantly impacts computational times in real-time measurements in long-range DAS and that achieving polarization independence introduces minimal processing overheads in the system. Additionally, the increase in the block size of processed samples per cycle results in diminishing increments in overall processing times per batch of new samples added, demonstrating the scalability of cloud computing schemes in long-range DAS and its capability to manage larger datasets efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24248194DOI Listing

Publication Analysis

Top Keywords

cloud computing
12
long-range das
12
real-time measurements
8
coherent detection
8
processing times
8
das
6
cloud
5
design evaluation
4
evaluation cloud
4
computing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!