This paper proposes a green computing strategy for low Earth orbit (LEO) satellite networks (LSNs), addressing energy efficiency and delay optimization in dynamic and energy-constrained environments. By integrating a Markov Decision Process (MDP) with a Double Deep Q-Network (Double DQN) and introducing the Energy-Delay Ratio (EDR) metric, this study effectively quantifies and balances energy savings with delay costs. Simulations demonstrate significant energy savings, with reductions of up to 47.87% under low business volumes, accompanied by a minimal delay increase of only 0.0161 s. For medium business volumes, energy savings reach 26.75%, with a delay increase of 0.0189 s, while high business volumes achieve a 4.36% energy reduction and a delay increase of 0.0299 s. These results highlight the proposed strategy's ability to effectively balance energy efficiency and delay, showcasing its adaptability and suitability for sustainable operations in LEO satellite networks under varying traffic loads.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679962 | PMC |
http://dx.doi.org/10.3390/s24248184 | DOI Listing |
Metab Brain Dis
January 2025
Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.
Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.
View Article and Find Full Text PDFEcology
January 2025
Tennenbaum Marine Observatories Network, Smithsonian Environmental Research Center, Edgewater, Maryland, USA.
Disease is a key driver of community and ecosystem structure, especially when it strikes foundation species. In the widespread marine foundation species eelgrass (Zostera marina), outbreaks of wasting disease have caused large-scale meadow collapse in the past, and the causative pathogen, Labyrinthula zosterae, is commonly found in meadows globally. Research to date has mainly focused on abiotic environmental drivers of seagrass wasting disease, but there is strong evidence from other systems that biotic interactions such as herbivory can facilitate plant diseases.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
Accurately predicting satellite clock deviation is crucial for improving real-time location accuracy in a GPS navigation system. Therefore, to ensure high levels of real-time positioning accuracy, it is essential to address the challenge of enhancing satellite clock deviation prediction when high-precision clock data is unavailable. Given the high frequency, sensitivity, and variability of space-borne GPS satellite atomic clocks, it is important to consider the periodic variations of satellite clock bias (SCB) in addition to the inherent properties of GPS satellite clocks such as frequency deviation, frequency drift, and frequency drift rate to improve SCB prediction accuracy and gain a better understanding of its characteristics.
View Article and Find Full Text PDFSci Rep
January 2025
School of Geographic Science, Changchun Normal University, Changchun, 130102, China.
Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!