A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging. | LitMetric

Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging.

Sensors (Basel)

Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.

Published: December 2024

Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated. Models used volumes, Euclidean, and Cosine distances of subcortical brain structures relative to the thalamus to differentiate among control (HC), prodromal (PR), and PD groups. Based on three separate experiments, the Logistic Regression approach was optimal, providing low feature complexity and strong predictive performance (accuracy: 85%, precision: 88%, recall: 85%) in PD-stage recognition. Using interpretable metrics, such as the volume- and centroid-based spatial distances, models achieved high diagnostic accuracy, presenting a promising framework for early-stage PD identification based on MRI scans.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24248152DOI Listing

Publication Analysis

Top Keywords

machine learning
8
parkinson's disease
8
mri scans
8
logistic regression
8
learning recognizes
4
recognizes stages
4
stages parkinson's
4
disease magnetic
4
magnetic resonance
4
resonance imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!