AI Article Synopsis

Article Abstract

In this study, we describe a low-noise complementary metal-oxide semiconductor (CMOS) image sensor (CIS) with a 10/11-bit hybrid single-slope analog-to-digital converter (SS-ADC). The proposed hybrid SS-ADC provides a resolution of 11 bits in low-light and 10 bits in high-light. To this end, in the low-light section, the digital-correlated double sampling method using a double data rate structure was used to obtain a noise performance similar to that of the 11-bit SS-ADC under low-light conditions, while maintaining linear in-out characteristics. The CIS with the proposed 10/11-bit hybrid SS-ADC was fabricated using a 110 nm 1-poly 4-metal CIS process. The measurement results showed that dark random noise was reduced by 8% in low light when using the proposed hybrid SS-ADC, compared with the existing 10-bit ADC. Additionally, in the case of high brightness, when using a 10-bit resolution, the dynamic power consumption decreased by approximately 31%, compared to the 11-bit ADC. The total power consumption is 3.9 mW at 15 fps when the analog, pixel, and digital supply voltages are 3.3 V, 3.3 V, and 1.5 V, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679468PMC
http://dx.doi.org/10.3390/s24248131DOI Listing

Publication Analysis

Top Keywords

hybrid ss-adc
12
cmos image
8
image sensor
8
hybrid single-slope
8
single-slope analog-to-digital
8
analog-to-digital converter
8
10/11-bit hybrid
8
proposed hybrid
8
power consumption
8
hybrid
5

Similar Publications

In this study, we describe a low-noise complementary metal-oxide semiconductor (CMOS) image sensor (CIS) with a 10/11-bit hybrid single-slope analog-to-digital converter (SS-ADC). The proposed hybrid SS-ADC provides a resolution of 11 bits in low-light and 10 bits in high-light. To this end, in the low-light section, the digital-correlated double sampling method using a double data rate structure was used to obtain a noise performance similar to that of the 11-bit SS-ADC under low-light conditions, while maintaining linear in-out characteristics.

View Article and Find Full Text PDF

This paper presents a 14-bit hybrid column-parallel compact analog-to-digital converter (ADC) for the application of digital infrared focal plane arrays (IRFPAs) with compromised power and speed performance. The proposed hybrid ADC works in two phases: in the first phase, a 7-bit successive approximation register (SAR) ADC performs coarse quantization; in the second phase, a 7-bit single-slope (SS) ADC performs fine quantization to complete the residue voltage conversion. In this work, the number of unit capacitors is reduced to 1/128th of that of a conventional 14-bit SAR ADC, which is beneficial for the application of small pixel-pitch IRFPAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!