Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within these complex signals, leading to a bias towards normal classes. To address these challenges, this paper proposes a method for arrhythmia classification based on a multi-branch, multi-head attention temporal convolutional network (MB-MHA-TCN). The model integrates three convolutional branch layers with different kernel sizes and dilation rates to capture features across varying temporal scales. A multi-head self-attention mechanism dynamically allocates weights, integrating features and correlations from different branches to enhance the recognition capability for difficult-to-classify samples. Additionally, the temporal convolutional network employs multi-layer dilated convolutions to progressively expand the receptive field for extracting long-term dependencies. To tackle data imbalance, a novel data augmentation strategy is implemented, and focal loss is utilized to increase the weight of minority classes, while Bayesian optimization is employed to fine-tune the model's hyperparameters. The results from five-fold cross-validation on the MIT-BIH Arrhythmia Database demonstrate that the proposed method achieves an overall accuracy of 98.75%, precision of 96.60%, sensitivity of 97.21%, and F1 score of 96.89% across five categories of ECG signals. Compared to other studies, this method exhibits superior performance in arrhythmia classification, significantly improving the recognition rate of minority classes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679161 | PMC |
http://dx.doi.org/10.3390/s24248124 | DOI Listing |
J Biomed Opt
January 2025
Columbia University, Department of Electrical Engineering, New York, United States.
Significance: Radiofrequency ablation to treat atrial fibrillation (AF) involves isolating the pulmonary vein from the left atria to prevent AF from occurring. However, creating ablation lesions within the pulmonary veins can cause adverse complications.
Aim: We propose automated classification algorithms to classify optical coherence tomography (OCT) volumes of human venoatrial junctions.
BMC Med Inform Decis Mak
January 2025
Department of Biomedical Engineering, National Defense Medical Center, Taiwan, No.161, Sec.6, Minchiuan E. Rd., Neihu Dist, Taipei, 11490, Taiwan.
Background: As the incidence and prevalence of Atrial Fibrillation (AF) proliferate worldwide, the condition has become the epicenter of a plethora of ECG diagnostic research. In recent diagnostic methodologies, Morse Continuous Wavelet Transform (MsCWT) is a feature extraction technique utilized to draw out distinctive attributes of ECG signals. In our study, we explore the employment of MsCWT in the classification of AF with ECG signals in a continuum.
View Article and Find Full Text PDFNeth Heart J
February 2025
Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
Introduction: Current family screening approaches in dilated cardiomyopathy (DCM) depend on the presence or absence of a familial genetic variant, in which variant pathogenicity (i.e. benign or pathogenic) classification drives screening recommendations.
View Article and Find Full Text PDFJACC Case Rep
December 2024
Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
Fetal and neonatal cardiac tumors are rare and often benign. Clinical presentation is primarily related to mass effect, pericardial effusion or arrhythmia. Prenatal detection can assist with risk assessment and inform optimal delivery plan and postnatal management.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cardiovascular Medicine, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China.
Purpose: Left atrial thrombus or spontaneous echo contrast (LAT/SEC) are widely recognized as significant contributors to cardiogenic embolism in non-valvular atrial fibrillation (NVAF). This study aimed to construct and validate an interpretable predictive model of LAT/SEC risk in NVAF patients using machine learning (ML) methods.
Methods: Electronic medical records (EMR) data of consecutive NVAF patients scheduled for catheter ablation at the First Hospital of Jilin University from October 1, 2022, to February 1, 2024, were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!