Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, neurofeedback training, and brain-computer interfaces. However, there is still much to verify and re-examine regarding the functionality of these devices and the quality of the signal they capture, particularly as the field evolves rapidly. In this study, we recorded the resting-state brain activity of healthy volunteers via three consumer-grade EEG devices, namely PSBD Headband Pro, PSBD Headphones Lite, and Muse S Gen 2, and compared the spectral characteristics of the signal obtained with that recorded via the research-grade Brain Product amplifier (BP) with the mirroring montages. The results showed that all devices exhibited higher mean power in the low-frequency bands, which are characteristic of dry-electrode technology. PSBD Headband proved to match BP most precisely among the other examined devices. PSBD Headphones displayed a moderate correspondence with BP and signal quality issues in the central group of electrodes. Muse demonstrated the poorest signal quality, with extremely low alignment with BP. Overall, this study underscores the importance of considering device-specific design constraints and emphasizes the need for further validation to ensure the reliability and accuracy of wearable EEG devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679099 | PMC |
http://dx.doi.org/10.3390/s24248108 | DOI Listing |
Neuroinformatics
January 2025
Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany.
Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet.
View Article and Find Full Text PDFForensic Sci Res
December 2024
Córdoba, Argentina.
Unlabelled: The characteristics of commercially available thermochromic ink pens have been studied and described since their appearance in 2006. The wide variety of brands and models now available warrants further study using an expanded sample size, to differentiate the general characteristics from specific characteristics. Herein, the ink strokes of 15 pens purchased in the province of Córdoba, Argentina were studied.
View Article and Find Full Text PDFNanoscale
January 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.
View Article and Find Full Text PDFNanotoxicology
January 2025
Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia.
In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!