A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lane Detection Based on ECBAM_ASPP Model. | LitMetric

Lane Detection Based on ECBAM_ASPP Model.

Sensors (Basel)

School of Artificial Intelligence and Computer Science, Nantong University, Nantong 226019, China.

Published: December 2024

With the growing prominence of autonomous driving, the demand for accurate and efficient lane detection has increased significantly. Beyond ensuring accuracy, achieving high detection speed is crucial to maintaining real-time performance, stability, and safety. To address this challenge, this study proposes the ECBAM_ASPP model, which integrates the Efficient Convolutional Block Attention Module (ECBAM) with the Atrous Spatial Pyramid Pooling (ASPP) module. Building on traditional attention mechanisms, the ECBAM module employs dynamic convolution kernels to eliminate dimensionality reduction, enhancing the efficiency of feature channel learning and local interactions while preserving computational efficiency. The ECBAM_ASPP model incorporates the ECBAM attention mechanism into the feature extraction network, effectively directing the network to focus on salient features while suppressing irrelevant ones. Additionally, through variable sampling of the input, the model achieves multi-scale feature extraction, enabling it to capture richer lane-related feature information. Experimental results on the TuSimple and CULane datasets demonstrate that the ECBAM_ASPP model significantly improves real-time performance while maintaining high detection accuracy. Compared with baseline methods, the proposed model delivers superior overall performance, showcasing greater robustness and practicality.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24248098DOI Listing

Publication Analysis

Top Keywords

ecbam_aspp model
16
lane detection
8
high detection
8
real-time performance
8
feature extraction
8
model
6
detection based
4
ecbam_aspp
4
based ecbam_aspp
4
model growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!