A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corrosion Monitoring in Automotive Lap Joints Based on Imaging Methods of Lamb Waves. | LitMetric

Corrosion Monitoring in Automotive Lap Joints Based on Imaging Methods of Lamb Waves.

Sensors (Basel)

School of Energy and Power Engineering, Beihang University, Beijing 100191, China.

Published: December 2024

Corrosion damage presents significant challenges to the safety and reliability of connected vehicles. However, traditional non-destructive methods often fall short when applied to complex automotive structures, such as bolted lap joints. To address this limitation, this study introduces a novel corrosion monitoring approach using Lamb wave-based weighted fusion imaging methods. First, the Minimum Variance Distortionless Response (MVDR) is utilized to process Lamb wave signals collected under bolt-loosening and bolt-tightening conditions to image the bolt locations. Second, based on the identified bolt positions, the weighted Reconstruction Algorithm for Probabilistic Inspection of Damage (RAPID) is applied to the Lamb wave signals acquired before and after corrosion, enabling precise imaging of the actual positions of the corroded bolts. Experiments are conducted on three-bolt lap joints in cases of single-corrosion and two-corrosion using A0 mode Lamb waves and piezoelectric sensor networks. The results demonstrate that the proposed method effectively images multiple types of damage and achieves maximum location deviations of 7.43 mm. This approach enables precise and visual multi-damage assessment, particularly in hard-to-access regions. When integrated with V2X-enabled (Vehicle-to-Everything) systems, the method offers potential for incorporation into automotive structural health monitoring systems for remote diagnosis in complex structures, thereby enhancing monitoring efficiency and accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24248092DOI Listing

Publication Analysis

Top Keywords

lap joints
12
corrosion monitoring
8
imaging methods
8
lamb waves
8
lamb wave
8
wave signals
8
lamb
5
corrosion
4
monitoring automotive
4
automotive lap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!