A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energy-Efficient Wireless Multimedia Sensor Nodes for Plant Proximal Monitoring. | LitMetric

The paper presents a double-radio wireless multimedia sensor node (WMSN) with a camera on board, designed for plant proximal monitoring. Camera sensor nodes represent an effective solution to monitor the crop at the leaf or fruit scale, with details that cannot be retrieved with the same precision through satellites or unnamed aerial vehicles (UAVs). From the technological point of view, WMSNs are characterized by very different requirements, compared to standard wireless sensor nodes; in particular, the network data rate results in higher energy consumption and incompatibility with the usage of battery-powered devices. Avoiding energy harvesters allows for device miniaturization and, consequently, application flexibility, even for small plants. To do this, the proposed node has been implemented with two radios, with different roles. A GPRS modem has been exclusively implemented for image transmission, while all other tasks, including node monitoring and camera control, are performed by a LoRaWAN class A end-node that connects every 10 min. Via the LoRaWAN downlink, it is possible to efficiently control the camera settings; the shooting times and periodicity, according to weather conditions; the eventual farming operations; the crop growth stages and the season. The node energy consumption has been verified in the laboratory and in the field, showing that it is possible to acquire one picture per day for more than eight months without any energy harvester, opening up further possible implementations for disease detection and production optimization.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24248088DOI Listing

Publication Analysis

Top Keywords

sensor nodes
12
wireless multimedia
8
multimedia sensor
8
plant proximal
8
proximal monitoring
8
monitoring camera
8
energy consumption
8
energy-efficient wireless
4
sensor
4
nodes plant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!