A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TCAD Simulation of Two Photon Absorption-Transient Current Technique Measurements on Silicon Detectors and LGADs. | LitMetric

Device simulation plays a crucial role in complementing experimental device characterisation by enabling deeper understanding of internal physical processes. However, for simulations to be trusted, experimental validation is essential to confirm the accuracy of the conclusions drawn. In the framework of semiconductor detector characterisation, one powerful tool for such validation is the Two Photon Absorption-Transient Current Technique (TPA-TCT), which allows for highly precise, three-dimensional spatially-resolved characterisation of semiconductor detectors. In this work, the TCAD framework Synopsys Sentaurus is used to simulate depth-resolved TPA-TCT data for both p-type pad detectors (PINs) and Low Gain Avalanche Detectors (LGADs). The simulated data are compared against experimentally measured TPA-TCT results. Through this comparison, it is demonstrated that TCAD simulations can reproduce the TPA-TCT measurements, providing valuable insights into the TPA-TCT itself. Another significant outcome of this study is the successful simulation of the gain reduction mechanism, which can be observed in LGADs with increasing densities of excess charge carriers. This effect is demonstrated in an p-type LGAD with a thickness of approximately 286 µm. The results confirm the ability of TCAD to model the complex interaction between carrier dynamics and device gain.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24248032DOI Listing

Publication Analysis

Top Keywords

photon absorption-transient
8
absorption-transient current
8
current technique
8
detectors lgads
8
tpa-tct
5
tcad
4
tcad simulation
4
simulation photon
4
technique measurements
4
measurements silicon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!