Monitoring animal populations is crucial for assessing the health of ecosystems. Traditional methods, which require extensive fieldwork, are increasingly being supplemented by time-lapse camera-trap imagery combined with an automatic analysis of the image data. The latter usually involves some object detector aimed at detecting relevant targets (commonly animals) in each image, followed by some postprocessing to gather activity and population data. In this paper, we show that the performance of an object detector in a single frame of a time-lapse sequence can be improved by including spatio-temporal features from the prior frames. We propose a method that leverages temporal information by integrating two additional spatial feature channels which capture stationary and non-stationary elements of the scene and consequently improve scene understanding and reduce the number of stationary false positives. The proposed technique achieves a significant improvement of 24% in mean average precision (mAP@0.05:0.95) over the baseline (temporal feature-free, single frame) object detector on a large dataset of breeding tropical seabirds. We envisage our method will be widely applicable to other wildlife monitoring applications that use time-lapse imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679056PMC
http://dx.doi.org/10.3390/s24248002DOI Listing

Publication Analysis

Top Keywords

object detector
12
wildlife monitoring
8
single frame
8
improving object
4
object detection
4
time-lapse
4
detection time-lapse
4
time-lapse imagery
4
imagery temporal
4
temporal features
4

Similar Publications

This paper presents a synthetic dataset of labeled game situations in recordings of federated handball and basketball matches played in Galicia, Spain. The dataset consists of synthetic data generated from real video frames, including 308,805 labeled handball frames and 56,578 labeled basketball frames extracted from 2105 handball and 383 basketball 5-s video clips. Experts manually labeled the video clips based on the respective sports, while the individual frames were automatically labeled using computer vision and machine learning techniques.

View Article and Find Full Text PDF

A hybrid human fall detection method based on modified YOLOv8s and AlphaPose.

Sci Rep

January 2025

Human-Computer Collaborative Robot Joint Laboratory of Anhui Province, Huainan, China.

To address the challenges of low detection accuracy of small objects and weak applicability of the multi-person fall action recognition applications, we propose a hybrid fall detection method based on modified YOLOv8s and AlphaPose called HFDMIA-Pose. Firstly, we use the modified Yolov8s as object detector. It uses SPD-Conv to preserve small object features and adds a small object detection layer, while using BCIOU as the loss function.

View Article and Find Full Text PDF

The terahertz (THz) security scanner offers advantages such as non-contact inspection and the ability to detect various types of dangerous goods, playing an important role in preventing terrorist attacks. We aim to accurately and quickly detect concealed objects in THz security images. However, current object detection algorithms face many challenges when applied to THz images.

View Article and Find Full Text PDF

Model compression for real-time object detection using rigorous gradation pruning.

iScience

January 2025

Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia.

Achieving lightweight real-time object detection necessitates balancing model compression with detection accuracy, a difficulty exacerbated by low redundancy and uneven contributions from convolutional layers. As an alternative to traditional methods, we propose Rigorous Gradation Pruning (RGP), which uses a desensitized first-order Taylor approximation to assess filter importance, enabling precise pruning of redundant kernels. This approach includes the iterative reassessment of layer significance to protect essential layers, ensuring effective detection performance.

View Article and Find Full Text PDF

Triple-attentions based salient object detector for strip steel surface defects.

Sci Rep

January 2025

School of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan Province, 464000, P. R. China.

Accurate detection of surface defects on strip steel is essential for ensuring strip steel product quality. Existing deep learning based detectors for strip steel surface defects typically strive to iteratively refine and integrate the coarse outputs of the backbone network, enhancing the models' ability to express defect characteristics. Attention mechanisms including spatial attention, channel attention and self-attention are among the most prevalent techniques for feature extraction and fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!