A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optically Controlled Drug Delivery Through Microscale Brain-Machine Interfaces Using Integrated Upconverting Nanoparticles. | LitMetric

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study. With the upconverted higher energy photons, we demonstrate the induction of photochemical (cleaving) reactions that enable the local release of specific dyes as a model system near the implant. The modified ECoG electrodes can be implanted in brain tissue to act as an uncaging system that releases small amounts of substance while simultaneously measuring the evoked neural response upon light activation. In this paper, several technological challenges like the surface modification of UCNPs, the immobilization of particles on the implantable platform, and measuring the stability of integrated UCNPs in in vitro and in vivo conditions are addressed in detail. Besides the chemical, mechanical, and optical characterization of the ready-to-use devices, the effect of nanoparticles on the original electrophysiological function is also evaluated. The results confirm that silicone-based brain-machine interfaces can be efficiently complemented with UCNPs to facilitate local model drug release.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24247987DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
brain-machine interfaces
8
model drug
8
higher energy
8
optically controlled
4
controlled drug
4
delivery microscale
4
microscale brain-machine
4
interfaces integrated
4
integrated upconverting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!