A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Lightweight ECC-Based Authentication and Key Agreement Protocol for IoT with Dynamic Authentication Credentials. | LitMetric

A Lightweight ECC-Based Authentication and Key Agreement Protocol for IoT with Dynamic Authentication Credentials.

Sensors (Basel)

School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, China.

Published: December 2024

Due to the openness of communication channels and the sensitivity of the data being collected and transmitted, securing data access and communication in IoT systems requires robust ECC-based authentication and key agreement (AKA) protocols. However, designing an AKA protocol for IoT presents significant challenges, as most IoT sensors are deployed in resource-constrained, unattended environments with limited computational power, connectivity, and storage. To achieve anonymous authentication, existing solutions typically rely on shared temporary public keys to mask device IDs or validate sender certificates, which increases the computational overhead. Furthermore, these protocols often fail to address crucial security concerns, such as nonresistance to ephemeral secret leakage (ESL) attacks and a lack of perfect forward security. To mitigate the computational burden, we propose a dynamic authenticated credentials (DACs) synchronization framework for anonymous authentication. Then, we introduce an ECC-based AKA scheme that employs DACs in place of temporary public keys or sender credentials, enabling efficient and secure anonymous authentication. The security of the proposed protocol was rigorously verified under the Real-or-Oracle model and validated using ProVerif. Performance comparisons demonstrate that our scheme offered significant improvements in security, with an over 37% reduction in communication cost and computational overhead.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24247967DOI Listing

Publication Analysis

Top Keywords

anonymous authentication
12
ecc-based authentication
8
authentication key
8
key agreement
8
protocol iot
8
temporary public
8
public keys
8
computational overhead
8
authentication
6
lightweight ecc-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!