One of the health challenges in the 21st century is to rethink approaches to non-communicable disease prevention. A solution is a smart city that implements technology to make health smarter, enables healthcare access, and contributes to all residents' overall well-being. Thus, this paper proposes an architecture to deliver smart health. The architecture is anchored in the Internet of Things and edge computing, and it is driven by artificial intelligence to establish three foundational layers in smart care. Experimental results in a case study on glucose prediction noninvasively show that the architecture senses and acquires data that capture relevant characteristics. The study also establishes a baseline of twelve regression algorithms to assess the non-invasive glucose prediction performance regarding the mean squared error, root mean squared error, and r-squared score, and the catboost regressor outperforms the other models with 218.91 and 782.30 in MSE, 14.80 and 27.97 in RMSE, and 0.81 and 0.31 in R2, respectively, on training and test sets. Future research works involve extending the performance of the algorithms with new datasets, creating and optimizing embedded AI models, deploying edge-IoT with embedded AI for wearable devices, implementing an autonomous AI cloud engine, and implementing federated learning to deliver scalable smart health in a smart city context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679357 | PMC |
http://dx.doi.org/10.3390/s24247965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!