This article reports a 110.2 MHz ultra-low-power phase-locked loop (PLL) for MEMS timing/frequency reference oscillator applications. It utilizes a 6.89 MHz MEMS-based oscillator as an input reference. An ultra-low-power, high-resolution phase-frequency detector (PFD) is utilized to achieve low-noise performance. Eliminating the reset feedback path used in conventional PFDs leads to dead/blind zone-free phase characteristics, which are crucial for low-noise applications within a wide operating frequency range. The PFD operates up to 2.5 GHz and achieves a linear resolution of 100 ps input time difference (Δtin), without the need for any additional calibration circuits. The linearity of the proposed PFD is tested over a phase difference corresponding to aa Δtin ranging from 100 ps to 50 ns. At a 1 V supply voltage, it shows an error of <±1.6% with a resolution of 100 ps and a frequency-normalized power consumption (Pn) of 0.106 pW/Hz. The PLL is designed and fabricated using a TSMC 65 nm CMOS process instrument and interfaced with the MEMS-based oscillator. The system reports phase noises of -106.21 dBc/Hz and -135.36 dBc/Hz at 1 kHz and 1 MHz offsets, respectively. It consumes 6.709 μW at a 1 V supply and occupies an active CMOS area of 0.1095 mm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679112PMC
http://dx.doi.org/10.3390/s24247963DOI Listing

Publication Analysis

Top Keywords

reference oscillator
8
dead/blind zone-free
8
μw low-noise
4
low-noise compact
4
compact pll
4
pll input
4
input mems-based
4
mems-based reference
4
oscillator featuring
4
featuring high-resolution
4

Similar Publications

Long-term dynamics of placozoan culture: emerging models for population and space biology.

Front Cell Dev Biol

January 2025

Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.

As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.

View Article and Find Full Text PDF

Inner speech refers to the silent production of language in one's mind. As a purely mental action without obvious physical manifestations, inner speech has been notoriously difficult to quantify. Inner speech is thought to be closely related to overt speech.

View Article and Find Full Text PDF

We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.

View Article and Find Full Text PDF

Detection of respiratory frequency rhythm in human alpha phase shifts: topographic distributions in wake and drowsy states.

Front Physiol

January 2025

Laboratory for Radiation Chemistry and Physics-030, Institute for Nuclear Sciences Vinča-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Introduction: The relationship between brain activity and respiration is recently attracting increasing attention, despite being studied for a long time. Respiratory modulation was evidenced in both single-cell activity and field potentials. Among EEG and intracranial measurements, the effect of respiration was prevailingly studied on amplitude/power in all frequency bands.

View Article and Find Full Text PDF

Extreme droughts in the Amazon Basin during cyclic ENSO events coupled with Indian Ocean Dipole modes and Tropical North Atlantic warming.

Sci Total Environ

January 2025

Programa de Pós-Graduação em Clima e Ambiente, Instituto Nacional de Pesquisas da Amazônia, Universidade do Estado do Amazonas, Av. André Araújo, 2936, Bairro Aleixo, 69060-001 Manaus, AM, Brazil.

The teleconnections between El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and Tropical North Atlantic warming (+TNA) play a critical role in characterizing extreme drought events in the Amazon Basin (AB). This study examines the seven most recent drought extreme events up to 2023, using seasonal composites of the sea surface temperature and atmospheric variables over a five-quarter period starting at the austral spring(-1) of the year preceding that when the lowest water level at Manaus port was recorded. Two distinct patterns emerge, driven by consecutive ENSO events with opposite phases, referred to as cyclic La Niña-El Niño and cyclic El Niño-La Niña drought events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!