A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cascaded Feature Fusion Grasping Network for Real-Time Robotic Systems. | LitMetric

Cascaded Feature Fusion Grasping Network for Real-Time Robotic Systems.

Sensors (Basel)

College of Engineering, Huaqiao University, Quanzhou 362021, China.

Published: December 2024

Grasping objects of irregular shapes and various sizes remains a key challenge in the field of robotic grasping. This paper proposes a novel RGB-D data-based grasping pose prediction network, termed Cascaded Feature Fusion Grasping Network (CFFGN), designed for high-efficiency, lightweight, and rapid grasping pose estimation. The network employs innovative structural designs, including depth-wise separable convolutions to reduce parameters and enhance computational efficiency; convolutional block attention modules to augment the model's ability to focus on key features; multi-scale dilated convolution to expand the receptive field and capture multi-scale information; and bidirectional feature pyramid modules to achieve effective fusion and information flow of features at different levels. In tests on the Cornell dataset, our network achieved grasping pose prediction at a speed of 66.7 frames per second, with accuracy rates of 98.6% and 96.9% for image-wise and object-wise splits, respectively. The experimental results show that our method achieves high-speed processing while maintaining high accuracy. In real-world robotic grasping experiments, our method also proved to be effective, achieving an average grasping success rate of 95.6% on a robot equipped with parallel grippers.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24247958DOI Listing

Publication Analysis

Top Keywords

grasping pose
12
grasping
9
cascaded feature
8
feature fusion
8
fusion grasping
8
grasping network
8
robotic grasping
8
pose prediction
8
network
5
network real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!