In response to the current situation of backward automation levels, heavy labor intensities, and high accident rates in the underground coal mine auxiliary transportation system, the mining trackless auxiliary transportation robot (MTATBOT) is presented in this paper. The MTATBOT is specially designed for long-range, space-constrained, and explosion-proof underground coal mine environments. With an onboard perception and autopilot system, the MTATBOT can perform automated and unmanned subterranean material transportation. This paper proposes an integrated odometry-based method to improve position estimation and mitigate location ambiguities for simultaneous localization and mapping (SLAM) in large-scale, GNSS-denied, and perceptually degraded subterranean transport roadway scenarios. Additionally, this paper analyzes the robot dynamic model and presents a nonlinear control strategy for the robot to autonomously track a planned trajectory based on the path-following error dynamic model. Finally, the proposed algorithm and control strategy are tested and validated both in a virtual transport roadway environment and in an active underground coal mine. The test results indicate that the proposed algorithm can obtain more accurate and robust robot odometry and better large-scale underground roadway mapping results compared with other SLAM solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679386 | PMC |
http://dx.doi.org/10.3390/s24247935 | DOI Listing |
Sci Rep
January 2025
South African Research Chair for Acid Mine Drainage Treatment, Tshwane University of Technology (TUT), Private Bag X680, Pretoria, 0001, South Africa.
Managing mine water in the best possible way is of great importance and depends on various factors like environmental protection, regulatory compliance and human health. To understand the complex chemical and hydrodynamic processes within the mine pool, it is critical to establish effective practices and management strategies. This study focuses on the characterisation of hydrodynamic processes affecting flooded underground mines, emphasising the importance of density stratification.
View Article and Find Full Text PDFSci Rep
January 2025
Fugu Energy Investment Group Shagoucha Mining Co., Ltd.,, Fugu, 719000, China.
The formation and development of plastic zone in the surrounding rock is the essence of large deformation damage to the surrounding rock in deep, highly stressed roadway. The -850 m roadway of the Qujiang mine is laid flat longitudinally under the 805 working face and coal pillar, and under the influence of the mining movement of the upper working face and the pre-stressing pressure of the coal pillar, the periphery of the roadway is no longer a pure non-uniform stress field, but a non-uniform stress field with both vertical and horizontal dynamic pressure. Based on the Hoek-Brown strength criterion, the unified strength theory is modified and the nonlinear unified strength theory of rock is established by comprehensively considering the intermediate principal stress, rock properties and rock structure.
View Article and Find Full Text PDFACS Omega
January 2025
State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China.
Under the environment of energy transformation in the world, underground coal gasification (UCG) is an important means to realize the green and clean development and utilization of deep coal resources. Due to a series of complex chemical reactions, the porosity and permeability of coal have changed significantly. Accurately characterizing the porosity and permeability of gasified coal is of great significance to the field screening, production control, and numerical simulation of the UCG project.
View Article and Find Full Text PDFSci Rep
January 2025
School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.
View Article and Find Full Text PDFSci Rep
January 2025
Heilongjiang Ground Pressure and Gas Control in Deep Mining Key Laboratory, Heilongjiang University of Science and Technology, Harbin, 15002, China.
When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!