Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials. Porphyrin-based COF materials can exert combined photodynamic and photothermal effects, circumventing the limitations of photodynamic therapy (PDT) due to hypoxia and issues in photothermal therapy (PTT) from heat shock proteins or the adverse impact of excessive heat on the protein activity of normal tissue. Furthermore, the porous structure of porphyrin COFs facilitates the circulation of oxygen molecules and reactive oxygen species and promotes sufficient contact with the lesion site for therapeutic functions. This review covers recent progress regarding porphyrin-based COFs in treating malignant tumors and venous thrombosis and for antibacterial and anti-inflammatory uses via combined PDT and PTT. By summarizing relevant design strategies, ranging from molecular design to functional application, this review provides a reference basis for the enhanced phototherapy application of porphyrin-based COFs as photoactive materials. This review aims to offer valuable insights for more effective biomedical applications of porphyrin-based COFs through the synthesis of existing experimental data, thereby paving the way for their future preclinical utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/pharmaceutics16121625 | DOI Listing |
Pharmaceutics
December 2024
School of Pharmacy, Nantong University, Nantong 226001, China.
Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300350, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin 300457, PR China. Electronic address:
A novel porphyrin based covalent organic frameworks (Por-BABN-COF) has been successfully constructed via self-polycondensation of a newly developed AB porphyrin building block possessing two amino groups and two neopentyl acetal at the meso-position. Por-BABN-COF was employed as a heterogeneous photocatalyst for the selective oxidation of sulfides and CO cycloaddition due to its superior light absorption capacity, strong crystallinity and high stability. The high conversion, good selectivity and excellent reusability indicate Por-BABN-COF is a promising photocatalyst for both reactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
Covalent organic frameworks (COFs) with high porosity and redox-active properties have been advanced as electrode materials for energy storage systems, although poor electron conductivity and inaccessibility of active pore sites hinder their performance as electrode material for supercapacitor application. Thus, incorporation of a COF with various conductive materials can be an effective strategy to improve their electrochemical performances for supercapacitors. Herein, we report the synthesis of POR-COF@g-CN composites by fabricating a porphyrin-based COF on g-CN via in situ solvothermal conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
The Radiology Department of Shanxi Provincial People' Hospital, Shanxi Medical University, Taiyuan 030001, China.
Wound infections have gradually become a major threat to human health. Recently, covalent organic frameworks (COFs) have shown great potential in antibacterial and wound healing; however, difficult biodegradability and long-time retention limit their further application. Herein, biodegradable COFs containing porphyrin backbones and hypoxia-sensitive azobenzene group, namely, HRCOFs, are fabricated for photodynamic therapy (PDT) and photothermal therapy (PTT) of wound infection.
View Article and Find Full Text PDFAnal Methods
November 2024
School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
Covalent organic frameworks (COFs) can be rationally designed with functional organic ligands to improve the electrochemical responsiveness of the electrode toward certain medicinal compounds. In this study, we synthesized a COF-Ni electrocatalyst material, which is formed by covalent coupling of electron-rich 2,3,6,7-tetrakis (4-formylphenyl) tetrakis (4-imidazolyl) (TTF-4CHO) and hole-rich 5,10,15,20-tetrakis (4-aminophenyl) porphyrin nickel(II) (TAPP-Ni). The reasonable electron transfer path design, the large specific surface area of the COF and the physical properties of ordered nanopores, as well as the Ni-N bond as a highly active catalytic center, allow the COF-Ni material modified electrode to exhibit excellent sensing performance for acetaminophen (ACOP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!