Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

Published: December 2024

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.

Download full-text PDF

Source
http://dx.doi.org/10.3390/pharmaceutics16121622DOI Listing

Publication Analysis

Top Keywords

articular cartilage
8
forty years
4
years cells
4
cells cartilage
4
cartilage regeneration
4
regeneration side
4
side treatment
4
treatment articular
4
cartilage damage
4
damage represented
4

Similar Publications

Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes.

View Article and Find Full Text PDF

Purpose: To identify key molecular components within the femoroacetabular impingement hip and compare the findings between male and female patients across varying age groups.

Methods: All patients undergoing hip arthroscopy for femoroacetabular impingement syndrome (FAIS) without hip dysplasia were included. During hip arthroscopy, performed at University of Wisconsin Health, loose articular cartilage, excess synovium, damaged labral tissue, and minimal adipose tissue were debrided only as needed for visualization and tissue repair purposes and collected.

View Article and Find Full Text PDF

Purpose: To evaluate the relationship between preoperative whole-joint imaging evaluation of the knee with patient-reported outcome (PRO) measures after cartilage restoration surgery (mosaicplasty, osteochondral allograft transplantation, matrix autologous chondrocyte implantation).

Methods: We retrospectively evaluated patients who underwent knee articular cartilage restoration at our institution from 2014 to 2020. The patients' knee magnetic resonance imaging (MRI) was evaluated with the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and semiquantitative synovial inflammation imaging biomarkers of the preoperative MRI.

View Article and Find Full Text PDF

Background: This study aims to delineate the global, regional, and national burden of malignant neoplasms of bone and articular cartilage (MNBAC) among individuals aged 65 years and older from 1990 to 2021, stratified by age, sex, and sociodemographic index (SDI).

Methods: We harnessed data from the Global Burden of Disease Study 2021 to evaluate the prevalence, incidence, mortality, and disability-adjusted life years (DALYs) associated with MNBAC among individuals aged 65 years and older across 204 countries and territories between 1990 and 2021. The socio-demographic Index (SDI) served as a metric to examine the influence of socioeconomic development on the burden of MNBAC.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!