A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation. | LitMetric

A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation.

Pharmaceutics

Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.

Published: December 2024

Triclabendazole (TCB) is a well-established anthelmintic effective in treating fascioliasis, a neglected tropical disease. This study employs quality by design (QbD) to investigate the impact of TCB polymorphism and pharmacotechnical variables, from the development of immediate-release tablets to process optimization and green analysis. Critical process parameters (CPPs) and critical material attributes (CMAs), characterized by type of polymorph, composition of excipients (talc, lactose, cornstarch, and magnesium stearate), and compression force, were screened using a Plackett-Burman design (n = 24), identifying polymorphic purity and cornstarch as a CPP. To establish a mathematical model linking CPP to dissolution behaviour, a multiple linear regression (MLR) was applied to the training design (central composite design, n = 18). Simultaneously, a near-infrared spectroscopy coupled to partial least squares (NIR-PLSs) method was developed to analyze CPPs. An independent set of samples was prepared and analyzed using the NIR-PLSs model, and their dissolution profiles were also obtained. The PLSs model successfully predicted the CPPs in the new samples, yielding almost quantitative results (100 ± 3%), and MLR dissolution predictions mirrored the actual dissolution profiles (f2 = 85). In conclusion, the developed model could serve as a comprehensive tool for the development and control of pharmaceutical formulations, starting from the polymorphic composition and extending to achieve targeted dissolution outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.3390/pharmaceutics16121594DOI Listing

Publication Analysis

Top Keywords

dissolution profiles
8
dissolution
5
qbd approach
4
approach formulation
4
formulation control
4
control triclabendazole
4
triclabendazole uncoated
4
uncoated tablets
4
tablets polymorphs
4
polymorphs drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!