A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation and Characterization of Melamine Aniline Formaldehyde-Organo Clay Nanocomposite Foams (MAFOCF) as a Novel Thermal Insulation Material. | LitMetric

The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated. Virgin melamine formaldehyde foam, MFF, melamine aniline formaldehyde foam, MAFFF, and melamine aniline formaldehyde-organoclay nanocomposite foams prepared with various organoclay contents, MAFOCFs, were characterized by HRTEM, FTIR, SEM, and XRD techniques. From spectroscopic and microscopic analyses, it was observed that organoclay flakes could be exfoliated without much change in the resin matrix with increasing clay content. In addition, it was determined that aniline formaldehyde, which is thought to enter the main polymer network as a bridge, caused textural changes in the polymeric matrix, and organoclay reinforcement also affected these changes. Although the highest compressive strength was obtained in MAFOCF5 foam with high organoclay content (0.40 MPa), it was determined that the compressive strengths in the nanocomposites were generally quite high despite their low bulk densities. In the prepared nanocomposite with 0.30% organoclay content (MAFOCF2), 0.33 MPa compressive strength and 0.051 thermal conductivity coefficient were measured. For virgin polymers and composites, bulk density, thermal conductivity, and compressive strength values were determined in the order of magnitude as MFF > MAFOCF1 > MAFOCF5 > MAFOCF6 > MAFF > MAFOCF3 > MAFOCF2 > MAFOCF4; MFF > MAFF > MAFOCF6 > MAFOCF5 > MAFOCF1 > MAFOCF4 > MAFOCF3 > MAFOCF2 and MAFOCF5 > MAFOCF4 > MAFOCF2 > MAFF > MAFOCF6 > MFF > MAFOCF1 > MAFOCF3. As a result, both compressive strength and thermal conductivity values indicate that nanocomposite foam with 0.20 wt% organoclay content can be a promising new insulation material.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym16243578DOI Listing

Publication Analysis

Top Keywords

melamine aniline
20
aniline formaldehyde
16
organoclay content
16
compressive strength
16
formaldehyde foam
12
thermal conductivity
12
nanocomposite foams
8
insulation material
8
organoclay
8
organoclay reinforcement
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!