Clear aligners have transformed orthodontic care by providing an aesthetic, removable alternative to traditional braces. However, their significant environmental footprint, contributing to approximately 15,000 tons of plastic waste annually, poses a critical challenge. To address this issue, advancements in 4D printing have introduced "smart" aligners with shape memory properties, enabling reshaping and reducing the number of aligners required per treatment. This study focuses on ClearX aligners, an innovative 4D-printed solution aimed at extending usage duration and minimizing environmental impact. Using a comprehensive suite of tests, including morphological, optical, and mechanical evaluations conducted via scanning electron microscopy, UV-Vis spectroscopy, infrared spectroscopy, and bending and strain assessments, we evaluated the optical and mechanical stability of the ClearX material before and after thermal activation. Our results demonstrate that ClearX aligners retain their structural and functional properties after reshaping. Temporary changes in transparency, observed only under prolonged treatment durations exceeding manufacturer recommendations, are fully reversible within 12 h and do not compromise the aligner's usability. These findings support the potential of ClearX aligners to effectively combine patient-centered, high-quality orthodontic care with sustainable practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679438PMC
http://dx.doi.org/10.3390/polym16243566DOI Listing

Publication Analysis

Top Keywords

clearx aligners
12
orthodontic care
8
optical mechanical
8
aligners
7
green dentistry
4
dentistry evaluating
4
evaluating potential
4
potential printing
4
printing sustainable
4
sustainable orthodontic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!