Ionomeric Nanofibers: A Versatile Platform for Advanced Functional Materials.

Polymers (Basel)

Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.

Published: December 2024

The one-dimensional nanomaterials known as nanofibers have remarkable qualities, such as large surface areas, adjustable porosity, and superior mechanical strength. Ionomers, types of polymers, have ionic functional groups that give them special properties, including high mechanical strength, water absorption capacity, and ionic conductivity. Integrating ionomers and nanofibers with diverse materials and advanced methodologies has been shown to improve the mechanical strength, processing capacity, and multifunctional attributes of ionomeric nanofibers. One-dimensional ionomeric nanomaterials offer a versatile platform for developing functional materials with ionic functionalities. This mini review critically examines recent progress in the development of ionomeric nanofibers, highlighting innovative fabrication techniques and their expanding applications across energy storage, environmental remediation, healthcare, advanced textiles, and electronics.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym16243564DOI Listing

Publication Analysis

Top Keywords

ionomeric nanofibers
12
mechanical strength
12
versatile platform
8
functional materials
8
ionomeric
4
nanofibers versatile
4
platform advanced
4
advanced functional
4
materials one-dimensional
4
one-dimensional nanomaterials
4

Similar Publications

Ionomeric Nanofibers: A Versatile Platform for Advanced Functional Materials.

Polymers (Basel)

December 2024

Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.

The one-dimensional nanomaterials known as nanofibers have remarkable qualities, such as large surface areas, adjustable porosity, and superior mechanical strength. Ionomers, types of polymers, have ionic functional groups that give them special properties, including high mechanical strength, water absorption capacity, and ionic conductivity. Integrating ionomers and nanofibers with diverse materials and advanced methodologies has been shown to improve the mechanical strength, processing capacity, and multifunctional attributes of ionomeric nanofibers.

View Article and Find Full Text PDF

Synthetic scaffolds are needed for generating organized neo-myocardium constructs to promote functional tissue repair. This study investigated the biocompatibility of an elastomeric electrospun degradable polar/hydrophobic/ionic polyurethane (D-PHI) composite scaffold with human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The composite material was electrospun to generate scaffolds, with nanofibres oriented in aligned or random directions.

View Article and Find Full Text PDF

Fuel cell (FC) is an attractive green alternative for today's fuel combustion systems. In common FCs, a polymer electrolyte membrane selectively conducts protons but blocks the passage of electrons and fuel. Nafion, the current benchmark membrane material, has a superior conductivity owing to unique morphology comprising randomly oriented elongated ionic nanochannels within its Teflon-like matrix.

View Article and Find Full Text PDF

Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.

Acta Biomater

September 2019

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada. Electronic address:

Tissue scaffolds need to be engineered to be cell compatible, have timely biodegradable character, be functional with respect to providing niche cell support for tissue repair and regeneration, readily accommodate multiple cell types, and have mechanical properties that enable the simulation of the native tissue. In this study, electrospun degradable polar hydrophobic ionic polyurethane (D-PHI) scaffolds were generated in order to yield an extracellular matrix-like structure for tissue engineering applications. D-PHI oligomers were synthesized, blended with a degradable linear polycarbonate polyurethane (PCNU), and electrospun with simultaneous in situ UV cross-linking in order to generate aligned nanofibrous scaffolds in the form of elastomeric composite materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!