This study reported a one-spot preparation of magnetic composite carbon (MCC@Fe) from microcrystalline cellulose (MC). The pure cellulose was impregnated in iron (III) chloride solution and carbonized at 650 °C. The MCC@Fe composite adsorbent underwent various characterization techniques. XRD identified nanostructured FeO particles with an average crystallite size of 34.3 nm embedded in the core subunits of the material. FESEM images indicated a rough and irregular surface, with some cavities along its surface, incorporating FeO nanoparticles, while EDS analysis confirmed the presence of elements like Fe, C, and O. Notably, combining thermal and chemical treatments produces a composite with more pores and a high specific surface area (500.0 m g) compared to MC (1.5 m/g). VSM analysis confirmed the magnetic properties (0.76 emu/g), while the Hydrophobic Index () showed that MCC@Fe was hydrophobic ( 1.395). The adsorption studies consisted of kinetic, mass transfer, equilibrium, and thermodynamics studies. Kinetic study of the adsorption of paracetamol on MCC@Fe composite proved to be rapid, and the time necessary for covering 95% of the surface (t) was lower than 27 min following the fractal-like pseudo-first-order model (FPFO). Liu's isotherm proved to be the most appropriate for understanding the adsorption equilibrium. Remarkably, the maximum sorption capacity (Q) of paracetamol was 34.78 mg g at 45 °C. The Δ° value (+27.00 kJ/mol) and the negative Δ° values were consistent with the physisorption mechanism and favorable process. Furthermore, the mass transfer mechanism showed that the transfer is governed by the intraparticle diffusion model, with surface diffusion being the rate-limiting step when considering the number greater than 100. This research displayed a single-route production of inexpensive magnetic nano adsorbents capable of efficiently eliminating paracetamol from aqueous environments.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym16243538DOI Listing

Publication Analysis

Top Keywords

mass transfer
12
magnetic composite
8
composite carbon
8
microcrystalline cellulose
8
transfer equilibrium
8
mcc@fe composite
8
analysis confirmed
8
surface
5
magnetic
4
carbon microcrystalline
4

Similar Publications

Facile Fabrication of Monodisperse Vinyl Hybrid Core-Shell Silica Microsphere with Short Range Radial Channel in bi-phase System.

Small

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.

The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.

View Article and Find Full Text PDF

The design and development of particulate photocatalysts has been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different mass ratio of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.

View Article and Find Full Text PDF

Allosteric regulation of ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin type-1 motif, member 13) activity involves an interaction between its Spacer (S) and CUB1-2 domains to keep the enzyme in a closed, latent conformation. Monoclonal antibodies (mAb) uncouple the S-CUB interaction to open the ADAMTS13 conformation and thereby disrupt the global enzyme latency. The molecular mechanism behind this mAb-induced allostery remains poorly understood.

View Article and Find Full Text PDF

Phthalate esters, frequently used as plasticizers in consumer products, raise concerns because of potential health effects. Using density functional theory (DFT) with BLYP and 6-311++G(d, p) basis sets, their properties, such as dipole moment, polarizability, proton affinity and ionization energy of phthalate esters are obtained. Reaction kinetics and thermodynamics of popular reagent ions like HO, NH, NO and O are computed to know the feasibility of the reactions with such ions.

View Article and Find Full Text PDF

Background/objectives: Host cell protein (HCP) content is a major attribute for biological and vaccine products that must be extensively characterized prior to product licensure. Enzyme Linked Immunosorbent Assay (ELISA) and Mass Spectrometry (MS) are conventional methods for quantitative host cell protein analysis in biologic and vaccine products. Both techniques are usually very tedious, labor-intensive, and challenging to transfer to other laboratories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!