Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cross-linked polyethylene (XLPE) is applied in most advanced high-voltage direct-current (HVDC) power cable insulations, which are produced via dicumyl peroxide (DCP) technology. The electrical conductivity of insulation material can be increased by cross-linking byproducts from the DCP process. Hence, currently much attention is being paid to a new process to produce cross-linking byproduct-free XLPE. The cross-linking in situ between ethylene-glycidyl methacrylate copolymer and 1,5-disubtituted pentane via reactive compounding is a substitute for DCP. The reaction potential energy information of the eighteen reaction channels was obtained at the B3LYP/6-311+G(,) level. Results demonstrated that epoxy groups and 1,5-disubtituted reactive groups can react in situ to realize the XLPE-based network structure via covalent linking, and epoxy ring openings yielded ester. 1,5-disubtituted pentane played a cross-linker role. The reactivity of the carboxyl group was stronger than that of the sulfydryl or hydroxyl group. The reaction channel RTS1 was more kinetically favorable due to the lower reaction Gibbs energy barrier height of 1.95 eV. The cross-linking network construction of the new XLPE insulation without byproducts opens up the possibility of DCP substitution, which is beneficial to furthering the design of thermoplastic insulation materials for power cables in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym16243536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!