Given the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated. It was found that the mechanical properties of recycled concrete enhanced by PPF are critical at an addition rate of 50% and then decrease slowly with an increase in the aggregate content. PPF effectively alleviates the problem of strength reductions caused by regenerated aggregate substitution through the fiber-bridging effect. Based on the experimental data, a mechanical transformation model considering fiber reinforcement and BA weakening was constructed, and the regression accuracy R2 was around 0.90. The environmental benefit obtained when only replacing the natural aggregate is low. Although the incorporation of fiber improves the carbon emissions of the material to a certain extent, the benefits are more noticeable compared with the increase in strength. The results show that garbage recovery and strength demand benefits are achieved when the amount of recycled brick aggregate is 50% of the total. The strength conversion model established in this paper has of high accuracy and was created with careful consideration of fiber reinforcement and the regenerated aggregate weakening correction, providing it with more robust adaptability and extensibility. The mechanical properties of the recycled brick aggregate concrete enhanced by PPF are excellent and sustainable when the replacement rate of BA is 50% and the PPF volume is 0.1%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym16243535 | DOI Listing |
Polymers (Basel)
December 2024
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China.
Given the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland.
The paper presents the results of experimental and numerical tests on barrel vaults with backfill material. The thickness, internal span, and rise of the vaults were 125 mm, 2000 mm, and 730 mm, respectively. In experimental studies, vaults with backfill of expanded clay aggregate or granite aggregate were tested.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic.
Human activities result in sediment accumulation, so the reservoirs gradually lose their functionality, impacting their ability to manage large flood inflows, supply water, and generate hydroelectric power. Therefore, periodic removal of sediments from water reservoirs is essential to maintain functionality. Notwithstanding, the management of dredged sediments is a multifaceted process that involves careful consideration of environmental, regulatory, and economic factors to ensure their responsibility and sustainable handling.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Engineering Department "Enzo Ferrari", Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy.
The use of recycled aggregates in the production of concrete and mortar represents a sustainable way to reintroduce these constituents-which are typically treated as waste and disposed of-in the production chain, providing new value to potentially polluting materials. The effect of recycled aggregates has been widely studied in the production of concrete due to the directions of National Standards in Italy; however, their role in the manufacturing of mortar must be investigated further due to the high variability that can be observed in the literature. In particular, the aim of this paper is the mechanical characterization of sustainable mortars defined by different mix designs and different binders, in which the aggregates are gradually replaced by a recycled sand obtained from the grinding of construction and demolition wastes, which could include old concrete, clay bricks, and minimal amounts of other kinds of residual materials.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Civil Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh.
The pertinence of recycled brick aggregate (RBA) in concrete structures largely depends on their bonding ability with the rebars. Considering the practical detailing of concrete structures where main rebars are usually confined by stirrups, this study conducted bending pullout tests on 12 beam specimens to study the influence of concrete confinement on the bond behavior of rebar in RBA concrete. The investigated variables include RBA%, rebar diameter (), embedment length ( ), and the ratio of concrete cover to rebar diameter ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!