This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.0 nm) on the surface of the graphene-PEDOT:PSS hybrid ink was determined by characterizations, including Raman spectroscopy, Fourier transform infrared spectroscopy, field-emission transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffractometry. The ZnO nanoparticle-decorated graphene-PEDOT:PSS with a sparking time of 2 min exhibited the highest response of 71.9% at 10 ppm of acetone, above those of samples treated with other sparking times and the undecorated control. In addition, the optimal sensor revealed high selectivity for acetone over several other kinds of gases, such as ammonia, toluene, dimethylformamide, ethanol, methanol, and benzene, at room temperature. The gas sensor also revealed a low limit of detection (0.4 ppm), high sensitivity (6.18 ppm), and high stability (5-week long-term) to acetone. The response and recovery times of the sensor were found to be 4.6 min and 4.2 min, respectively. The acetone-sensing mechanism was attributed to the formation of p-n heterojunctions, which were responsible for the significantly enhanced sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677939 | PMC |
http://dx.doi.org/10.3390/polym16243521 | DOI Listing |
Langmuir
January 2025
Department of Physics, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India.
This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).
View Article and Find Full Text PDFDoping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared a precipitation approach.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
This study investigates the synergistic effects of zinc oxide nanoparticles (ZnO NPs) and melatonin (MT) on Fragaria × ananassa (strawberry) plants under drought stress, focusing on growth, fruit biomass, and stress tolerance. ZnO NPs enhance nutrient uptake and stress resistance, while MT regulates growth hormones and boosts photosynthetic efficiency. Seven treatments were evaluated: T1 (no stress, 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark. Electronic address:
Efficient phosphorus (P) removal from agricultural drainage is crucial for making its removal and recovery economically viable and operationally feasible. This study evaluated cost-effective, green-synthesized nanoparticles (using grass extract) for rapid and efficient P adsorption. Batch experiments were conducted to assess the effect of pH, P concentration, adsorbent dosage, contact time, and temperature on P adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!