Modeling of Accumulator in Roll-to-Roll Coating Equipment and Tension Control with Nonlinear PID.

Polymers (Basel)

Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China.

Published: December 2024

This paper addresses the issue of the high-precision control of substrate tension in an accumulator during the roll-to-roll coating process. First, a coupling model for tension errors in the substrate within the accumulator is established, along with dynamic models for the input-output rollers, carriage, and the thrust model of the ball screw. Based on these models, a simulation model is built in MATLAB/Simulink to analyze the main causes of substrate tension errors in the accumulator under uncontrolled conditions. Next, to tackle the tension errors caused by carriage displacement, a nonlinear proportional-integral-derivative (PID) controller is proposed, and a control strategy for substrate tension in the accumulator is designed. Finally, based on the established simulation model, experiments are conducted using the proposed nonlinear PID controller and the designed tension control strategy, and their performance is compared with that of a classical PID controller. The simulation results show that both the nonlinear PID controller and the classical PID controller, when combined with the proposed tension error control strategy, can reduce tension errors in the accumulator substrate. However, the nonlinear PID controller is more suitable for controlling substrate tension errors in the accumulator. On the one hand, the nonlinear PID controller has better anti-disturbance capability. In the anti-disturbance experiment, under PID control, the substrate tension error remains stable at around -1.6 N, with tension disturbances of ±0.2 N occurring at approximately 185 s and 135 s. On the other hand, the nonlinear PID controller demonstrates better robustness. In the robustness experiment, under the nonlinear PID controller, the substrate tension error fluctuates within the range of 0 to 0.02 N, showing excellent robustness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728844PMC
http://dx.doi.org/10.3390/polym16243479DOI Listing

Publication Analysis

Top Keywords

pid controller
36
nonlinear pid
28
substrate tension
24
tension errors
20
tension
13
errors accumulator
12
control strategy
12
tension error
12
pid
11
controller
9

Similar Publications

Aims: This study compared the hemostatic effects and complications of oxidized regenerated cellulose (ORC) and topical TXA in total knee arthroplasty (TKA), thus providing a reference for the use of ORC as an alternative hemostatic agent to TXA in TKA.

Methods: A total of 105 patients were included in this study and randomized into blank control, ORC, and TXA groups. The primary outcomes were total blood loss, hemoglobin drop (Hb drop), transfusion rates, and incidence of thrombosis.

View Article and Find Full Text PDF

Cervicovaginal microbiome and natural history of Chlamydia trachomatis in adolescents and young women.

Cell

January 2025

Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA. Electronic address:

This study investigated the cervicovaginal microbiome's (CVM's) impact on Chlamydia trachomatis (CT) infection among Black and Hispanic adolescent and young adult women. A total of 187 women with incident CT were matched to 373 controls, and the CVM was characterized before, during, and after CT infection. The findings highlight that a specific subtype of bacterial vaginosis (BV), identified from 16S rRNA gene reads using the molBV algorithm and community state type (CST) clustering, is a significant risk factor for CT acquisition.

View Article and Find Full Text PDF

ATKB-PID: an adaptive control method for micro tension under complex hot rolling conditions.

Sci Rep

January 2025

State Key Laboratory of Metallurgical Intelligent Manufacturing System, Beijing, 100071, China.

At present, the parameters of the controllers in hot rolling roughing microtension control systems are not adaptively adjustable to variations in working conditions, which compromises both width accuracy and production stability. To address this issue, this paper introduces an ATKB-PID adaptive micro tension control method. This method incorporates a linear attention layer and utilizes a K-Nearest Neighbors (KNN) algorithm to predict the optimal learning rate and inertia coefficient under actual operating conditions.

View Article and Find Full Text PDF

Steam condensers are vital components of thermal power plants, responsible for converting turbine exhaust steam back into water for reuse in the power generation cycle. Effective pressure regulation is crucial to ensure operational efficiency and equipment safety. However, conventional control strategies, such as PI, PI-PDn and FOPID controllers, often struggle to manage the nonlinearities and disturbances inherent in steam condenser systems.

View Article and Find Full Text PDF

Road surface roughness is the cause of vehicle vibration, which is considered a system disturbance. Previous studies on suspension system control often ignore the influence of disturbances while designing the controller, leading to system performance degradation under severe vibration conditions. In this work, we propose a control method to improve active suspension performance that reduces vehicle vibration by eliminating the influence of road disturbances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!