A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Study on the Preparation and Performance of Ultrafine Powder Made of Industrial Hemp Degumming Residue. | LitMetric

A Study on the Preparation and Performance of Ultrafine Powder Made of Industrial Hemp Degumming Residue.

Polymers (Basel)

School of Textile Science and Engineering, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan 430200, China.

Published: December 2024

Industrial hemp, one of the most widely available and extensively produced varieties, generates a substantial amount of waste in the form of hemp cellulose. This study uses a recycling method combining crushing and acid treatment to convert leftover hemp fiber into ultrafine powder. A scanning electron microscope (SEM), an atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR), and X-ray diffraction (XRD) were used to examine the morphology of acid-treated hemp fiber heated to 200 °C and crushed into powder. The decrease in intensity, fiber surface crystalline, and grain size was analyzed. It became apparent that fiber strength decreased, and fiber roughness significantly increased after acid treatment. The degree of crystallinity of the broken fibers decreased significantly. The proposed method was a simple and effective method for converting leftover hemp fiber into ultrafine powder. In approximately 3 to 5 min, about 1 kg of dry ultrafine powder with a particle size of 38.68 μm was produced. This production method will significantly enhance future industrial applications of hemp residue.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym16243473DOI Listing

Publication Analysis

Top Keywords

ultrafine powder
16
hemp fiber
12
industrial hemp
8
acid treatment
8
leftover hemp
8
fiber ultrafine
8
hemp
7
fiber
6
powder
5
study preparation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!