The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process. Since the casting solution properties (e.g., viscosity) and the interactions in a three-component system (polymer, solvent, and non-solvent) play noticeable roles in the NIPS process, polysulfone samples in a wide range of molecular weights (M = 76,000-122,000 g·mol) with terminal hydroxyl groups were synthesized for the first time. Commercial PSF with predominantly terminal chlorine groups (Ultrason S 6010) was used as a reference. The PSF samples were characterized by NMR, DSC, and TGA methods, and the Hansen solubility parameters were calculated. It was found that increasing the ratio of terminal -OH over -Cl groups improved the "solubility" of PSF in N-methyl-2-pyrrolidone (NMP) and water. A direct dependence of the gas permeance of porous supports on the coagulation rate of the casting solution was identified for the first time. It was shown that the use of synthesized PSF (M = 76,000 g·mol, M/M = 3.0, (-OH):(-Cl) ratio of 4.7:1) enabled a porous support with a CO permeance of 26,700 GPU to be obtained, while the support formed from a commercial PSF Ultrason S 6010 (M = 68,000 g·mol, M/M = 1.7, (-OH):(-Cl) ratio of 1:1.9) under the same conditions demonstrated 4300 GPU. The siloxane-based materials were used for the selective layer since the thin films based on rubbery polymers do not undergo the same accelerating physical aging as glassy polymers. Two types of materials were screened for the selective layer: synthesized polymethyltrifluoroethylacrylate siloxane-polydecylmethylsiloxane (50F3) copolymer, and polydimethylsiloxane (PDMS). 50F3 siloxane was studied for gas separation applications for the first time. It was shown that the permeance of composite membranes based on high-performance porous supports from the PSF samples synthesized was 3.5 times higher than that from similar composite membranes based on supports from a commercial Ultrason S 6010 PSF with a permeance value of 4300 GPU for CO. It was found that the enhanced gas permeance of composite membranes based on the highly permeable porous PSF supports developed was observed for both 50F3 polysiloxane and commercial PDMS. At the same time, the CO/CO selectivity of the composite membranes with a 50F3-selective layer (9.1-9.3) is 1.5 times higher than that of composite membranes with a PDMS-selective layer. This makes the F-containing 50F3 polysiloxane a promising polymer for CO/CO separation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680076 | PMC |
http://dx.doi.org/10.3390/polym16243453 | DOI Listing |
Chem Commun (Camb)
January 2025
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.
View Article and Find Full Text PDFUnlabelled: One of the principles of prevention and non-drug treatment of liver diseases, including hepatitis of various etiologies, is the normalization of the diet, including the use of daily diet foods with physiologically active ingredients, in particular betulin, which helps to reduce metabolic and oxidative processes within liver cells. The aim of the work was to evaluate the in vivo effect of triterpene alcohol betulin Roth isolated from the bark of birch Betula pendula Roth. added to fat-containing products (for example, mayonnaise) on the biochemical parameters of blood and the morphological structure of the liver of rats with initiated acute toxic hepatitis.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored.
View Article and Find Full Text PDFNanoscale
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.
View Article and Find Full Text PDFContact (Thousand Oaks)
January 2025
Department of Biology, Barnard College at Columbia University, 3009 Broadway, New York, NY 10023, USA.
The composition of eukaryotic membranes reflects a varied but precise amalgam of lipids. The genetic underpinning of how such diversity is achieved or maintained is surprisingly obscure, despite its clear metabolic and pathophysiological impact. The Arv1 protein is represented in all eukaryotes and was initially identified in the model eukaryote as a candidate transporter of lipids from the endoplasmic reticulum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!