Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.1 mmol·L Spd and then subjecting them to 100 mmol·L NaCl stress for 24 h, with sampling for analysis at the 24 h and the four-leaf-one-heart stage. The results indicated that under NaCl stress, the rice's germination and vigor indices significantly decreased. However, exogenous Spd seed priming reduced the accumulation of malondialdehyde, enhanced the capacity for osmotic adjustment, and increased the amylase and antioxidant activity by 50.07% and 26.26%, respectively. Under NaCl stress, the morphological development of rice seedlings was markedly inhibited, whereas exogenous Spd seed priming improved the aboveground and belowground biomass of the rice under stress conditions, as well as the content of photosynthetic pigments. It also reduced the damage to seedlings from electrical conductivity, helped maintain ionic balance, and promoted the excretion of Na and Cl and the absorption of K and Ca. In the salt-sensitive rice variety 9311, the soluble protein content increased by 15.12% compared to the salt-tolerant rice variety HD961, especially under 100 mmol·L NaCl stress, when the effect of exogenous Spd seed priming was more pronounced. In summary, these findings might provide new research perspectives and strategies for improving the salt tolerance of rice under NaCl stress.

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants13243599DOI Listing

Publication Analysis

Top Keywords

nacl stress
28
rice variety
16
exogenous spd
16
spd seed
16
seed priming
16
rice
10
stress
9
effects exogenous
8
seed germination
8
rice nacl
8

Similar Publications

Calotropis procera (Aiton) W.T. Aiton is a medicinal plant belonging to the family Apocynaceae as a core source of natural cardenolides.

View Article and Find Full Text PDF

Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.

View Article and Find Full Text PDF

-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().

View Article and Find Full Text PDF

Arbuscular Mycorrhizal Fungi as a Salt Bioaccumulation Mechanism for the Establishment of a Neotropical Halophytic Fern in Saline Soils.

Microorganisms

December 2024

Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.

is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.

View Article and Find Full Text PDF

Sulfidogenic bacteria cause numerous issues in the oil industry since they produce sulfide, corroding steel equipment, reducing oil quality, and worsening the environmental conditions in oil fields. The purpose of this work was to isolate and taxonomically identify the sulfidogenic bacteria responsible for the corrosion of steel equipment at the Karazhanbas oil field (Kazakhstan). In this study, we characterized five sulfidogenic strains of the genera , , and isolated from the formation water of the Karazhanbas oil field (Kazakhstan).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!