Flowering is initiated in response to environmental cues, with the photoperiod and ambient temperature being the main ones. The regulatory pathways underlying floral transition are well studied in but remain largely unknown in legumes. Here, we first applied an in silico approach to infer the regulatory inputs of four -like genes of the narrow-leafed lupin . We studied the roles of , , , and in the activation of meristem identity gene in response to 8 h and 16 h photoperiods, vernalization, and the circadian rhythm. We developed a set of regression models of regulation by the -like genes and fitted these models to the recently published gene expression data. The importance of the input from each -like gene or their combinations was estimated by comparing the performance of models with one or few -like genes turned off, thereby simulating loss-of-function mutations that were yet unavailable in . Our results suggested that in the early flowering line and intermediate line, the gene played a major role in floral transition; however, it acted through different mechanisms under short and long days. Turning off the regulatory input of resulted in substantial changes in expression associated with vernalization sensitivity and the circadian rhythm. In the wild line, we found that both and genes had an essential role under long days, which was associated with the vernalization response. These results could be applied both for setting up new experiments and for data analysis using the proposed modeling approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678331PMC
http://dx.doi.org/10.3390/plants13243548DOI Listing

Publication Analysis

Top Keywords

-like genes
12
narrow-leafed lupin
8
floral transition
8
circadian rhythm
8
long days
8
associated vernalization
8
modeling floral
4
floral induction
4
induction narrow-leafed
4
lupin environmental
4

Similar Publications

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Perrault syndrome (PS) is an extremely rare autosomal recessive condition characterized primarily by bilateral sensorineural hearing loss in both genders and primary or secondary ovarian failure in females. Neurological features such as cerebral ataxia, peripheral neuropathy, epilepsy, and intellectual disability are frequent manifestations of PS. To date, six genes have been reported to cause PS, and nearly 100 families have been identified worldwide with this syndrome.

View Article and Find Full Text PDF

Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased.

View Article and Find Full Text PDF

EXO: A Dual-Mechanism Stimulator of Interferon Genes Activator for Cancer Immunotherapy.

ACS Nano

January 2025

Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.

View Article and Find Full Text PDF

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!