Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions.

Plants (Basel)

Institut für Angewandte Wissenschaft, Ausbau 5, 18258 Rukieten, Germany.

Published: December 2024

Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted. Phosphate is sorbed into various soil solids, Fe/Al oxides, clay minerals and, sometimes overlooked, humic Fe/Al surfaces. The immobilization of P in soil is often the result of the diffusion of P into the internal surfaces of oxides or humic substances. This slow reaction between soil and P further reduces the availability of P in soil, leading to P fixation. The solubilization of soil P by root-released carboxylates is a promising way to increase the acquisition and uptake of P from P-fixing soils. Citrate and, sometimes, oxalate are effective with respect to additional P solubilization or P mobilization, which may help increase the diffusive P flux into the roots by increasing the P solution concentrations in the rhizosphere. The mobilization of humic-associated P by carboxylates may be an effective way to improve soil P solubility. Not only orthophosphate anions are mobilized by root-released carboxylates, but also higher phosphorylated inositol phosphates, as the main part of P esters in soil are mobilized by carboxylates. Because of the rather strong bonding of higher phosphorylated inositol phosphates to the soil solid phase, the mobilization step by carboxylates appears to be essential for plants to acquire inositol-P. The ecological relevance of P mobilization by carboxylates and its effect on the uptake of P by crops and grassland species are, at best, partially understood. Plant species which form cluster roots such as ( L.) or ( L.) release high rates of carboxylates, mainly citrate from these root clusters. These plant species acquire fixed or low available P which is accessible to plants at rates which do not satisfy their P demand without P mobilization. And and make soil P available to other plants in mixed cropping systems or for subsequent plant species in crop rotations. The mobilization of P by carboxylates is probably also important for legume/grass mixtures for forage production. Species such as alfalfa, red clover or white clover release carboxylates. The extent of P mobilization and P uptake from mobilized P by legume/grass mixtures deserves further research. In particular, which plant species mostly benefit from P mobilization by legume-released carboxylates is unknown. Organic farming systems require such legume/grass mixtures for the introduction of nitrogen (N) by forage legumes into their farming system. For this agricultural system, the mobilization of soil P by carboxylates and its impact on P uptake of the mixtures are an important research task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678582PMC
http://dx.doi.org/10.3390/plants13243478DOI Listing

Publication Analysis

Top Keywords

plant species
16
soil
13
legume/grass mixtures
12
carboxylates
11
mobilization
9
availability soil
8
solution concentrations
8
diffusive flux
8
root-released carboxylates
8
higher phosphorylated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!