Seasonal Morphological and Biochemical Variation of Pierre ex A. Froehner (Rubiaceae) Leaves of Early, Intermediate and Late Maturing Genotypes.

Plants (Basel)

Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Centro Regional de Desenvolvimento Rural-Norte, Linhares 29901-443, ES, Brazil.

Published: December 2024

Understanding the growth patterns of genotypes optimizes their selection and management. The objective of this study is to investigate the seasonal variations in the morphology and biochemistry of clone leaves, considering climatic conditions and the maturation cycle. Morphological characteristics and carbohydrate contents of the leaves were analyzed throughout the growth cycle. A nonlinear logistic model was applied, and critical points of the leaf emission rates of plagiotropic branches were determined. Leaf growth was greater at higher temperatures during the rainy periods and lower at milder temperatures during the dry season. Genotype 143 exhibited the largest leaf width in spring, while 104, A1, and P2 had the largest leaf width in summer. The logistic model was suitable for describing leaf emission, with the critical points of genotype 143 being earlier, while P2 displayed a longer leaf emission cycle. The peak growth period influenced the quantities of starch and total soluble sugars in the leaves. The dormancy period showed a higher availability of reducing sugars. Pearson correlation indicated significant coefficients between temperature, precipitation, photoperiod, and foliar characteristics. The results obtained serve as a reference for future investigations, particularly in response to environmental challenges.

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants13243461DOI Listing

Publication Analysis

Top Keywords

leaf emission
12
logistic model
8
critical points
8
genotype 143
8
largest leaf
8
leaf width
8
leaf
6
seasonal morphological
4
morphological biochemical
4
biochemical variation
4

Similar Publications

Some plant species produce an extraordinary diversity of specialized metabolites. The diverse class of terpenes is characteristic for many aromatic plants, and terpenes can occur as both emitted volatiles and stored compounds. Little is known about how intraspecific chemodiversity and phenotypic integration of both emitted volatile and stored terpenes differ intra-individually across plant development and between different plant parts, and studies considering both spatial and temporal scales are scarce.

View Article and Find Full Text PDF

Seasonal Morphological and Biochemical Variation of Pierre ex A. Froehner (Rubiaceae) Leaves of Early, Intermediate and Late Maturing Genotypes.

Plants (Basel)

December 2024

Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Centro Regional de Desenvolvimento Rural-Norte, Linhares 29901-443, ES, Brazil.

Understanding the growth patterns of genotypes optimizes their selection and management. The objective of this study is to investigate the seasonal variations in the morphology and biochemistry of clone leaves, considering climatic conditions and the maturation cycle. Morphological characteristics and carbohydrate contents of the leaves were analyzed throughout the growth cycle.

View Article and Find Full Text PDF

Salicylic Aldehyde and Its Potential Use in Semiochemical-Based Pest Control Strategies Against .

Insects

December 2024

Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Avenida de Portugal 41, 24009 León, Spain.

The poplar bark beetle (Coleoptera: Scolytidae) is a key pest of poplar trees (Malpighiales: Salicaceae, genus ) across northern Spain. However, among the more than 200 poplar clones available on the market, the clone USA 184-411 has the highest susceptibility to attacks. We tested the hypothesis that compounds released by the most susceptible poplar clone chemically mediate behavior.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Article Synopsis
  • Soil heavy metal pollution and insect herbivory together affect plant volatile organic compound (VOC) emissions, crucial for ecological functions and atmospheric processes.
  • Male eastern cottonwood seedlings emit higher levels of certain VOCs compared to females, particularly when exposed to soil cadmium (Cd) and insect feeding.
  • The study finds that Cd exposure significantly enhances herbivore-induced VOC emissions in male plants, raising potential consequences for ecological relationships and air quality.
View Article and Find Full Text PDF

Smallest microplastics intensify maize yield decline, soil processes and consequent global warming potential.

J Hazard Mater

December 2024

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!