A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Soil Application of Selenium in Wheat ( L.) Under Water Stress Improves Grain Quality and Reduces Production Losses. | LitMetric

Selenium (Se) is an essential element for humans. However, much of the world's human population is deficient in this element, which has become a public health problem. This study aimed to evaluate whether applying severe water stress to wheat plants ( L.) could allow Se to reduce the production losses and increase the grain quality, thereby contributing to the reduction in hidden hunger. The experiment was conducted in a randomized block design with four replications in a 5 × 2 factorial scheme, with five doses of Se (0.00, 0.25, 0.50, 1.00, and 2.00 mg dm) and two irrigation conditions (with and without water deficit). When sodium selenate (NaSeO) was applied to the soil, the grains were rich in Se. Under low doses, there was an enrichment of the grains in sulfur, iron, copper, and zinc as well as total free amino acids and total soluble proteins, and lower losses in productivity under severe water stress. Higher doses decreased the concentration of malondialdehyde (MDA) and hydrogen peroxide (HO), increased the catalase activity, and increased the water use efficiency (WUE). Therefore, applying Se at a dose of 0.25 mg dm is effective for the biofortification of wheat grains. It enhances grain nutritional quality, increases Se bioaccessibility, and reduces production losses under water stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants13243460DOI Listing

Publication Analysis

Top Keywords

water stress
16
production losses
12
grain quality
8
reduces production
8
severe water
8
water
6
soil application
4
application selenium
4
selenium wheat
4
wheat water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!