A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of Phosphate-Based Binders for the Stabilization and Solidification of Metal-Contaminated Soil: Mechanisms and Efficacy Evaluation. | LitMetric

At present, contamination due to toxic metals is a global concern. The management of problems caused by heavy metals relies on stabilization/solidification, which is the most effective technique for the control of metal pollution in soil. This study examined the immobilization efficiency of various phosphate-based binders (NaPO, NaHPO, NaHPO), in addition to ordinary Portland cement (OPC), MgO, and CaO, for the stabilization of multi-metal-contaminated soils. Moreover, this study focused on the leachability of copper, nickel, zinc, lead, cadmium, and manganese (Cu, Ni, Zn, Pb, Cd, Mn, respectively) over different time periods and with different concentrations. Batch leaching experiments were conducted to determine the leaching ratios and percentages of the various metal concentrations, along with measuring the pH values of the leachates. Our results indicate that the use of OPC was validated due to its superior immobilization performance across all metals present in the soil, but particularly with regard to metals in high concentrations. This was due to the formation of stable hydroxides and the high pH values, which assisted in abating the metals' solubility. Additionally, phosphate-based binders, despite being environmentally favorable, were found to be less effective, particularly for Pb and Cu, and the leaching results exceeded non-hazardous waste limits. MgO showed reasonable immobilization results but was less effective compared to OPC; on the other hand, CaO exhibited increased leaching over time. Therefore, the present research serves primarily to highlight that OPC is more suitable for soil remediation at industrial sites and in the construction of infrastructure. Meanwhile, phosphate-based binders are shown to be more appropriate for eco-friendly, non-load-bearing applications.

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxics12120907DOI Listing

Publication Analysis

Top Keywords

phosphate-based binders
16
application phosphate-based
4
binders
4
binders stabilization
4
stabilization solidification
4
solidification metal-contaminated
4
soil
4
metal-contaminated soil
4
soil mechanisms
4
mechanisms efficacy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!