A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing Heavy Metal Uptake in Through Electrokinetic Treatment: A Comprehensive Study on Phytoremediation from Mine Tailings. | LitMetric

Copper mining drives economic growth, with the global demand expected to reach 120 million metric tons annually by 2050. However, mining produces tailings containing heavy metals (HMs), which poses environmental risks. This study investigated the efficacy of phytoremediation (Phy) combined with electrokinetic treatment (EKT) to increase metal uptake in grown in tailings from the Metropolitan Region of Chile. The plants were exposed to varying voltages and treatment durations. In the control (no EKT), the root metal contents were Fe (1008.41 mg/kg) > Cu (176.38 mg/kg) > Mn (103.73 mg/kg) > Zn (30.26 mg/kg), whereas in the shoots, the order was Mn (48.69 mg/kg) > Cu (21.14 mg/kg) > Zn (17.67 mg/kg) > Fe (27.32 mg/kg). The optimal EKT (15 V for 8 h) significantly increased metal uptake, with roots accumulating Fe (5997.24 mg kg) > Mn (672 mg kg) > Cu (547.68 mg kg) > Zn (90.99 mg kg), whereas shoots contained Fe (1717.95 mg kg) > Mn (930 mg kg) > Cu (219.47 mg kg) > Zn (58.48 mg kg). Although EKT enhanced plant growth and biomass, higher voltages stressed the plants. Longer treatments were more effective, suggesting that EK-Phy is a promising method for remediating metal-contaminated tailings.

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxics12120860DOI Listing

Publication Analysis

Top Keywords

metal uptake
12
electrokinetic treatment
8
mg/kg
8
optimizing heavy
4
metal
4
heavy metal
4
uptake electrokinetic
4
treatment comprehensive
4
comprehensive study
4
study phytoremediation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!