Menopause leads to a decline in estrogen levels, resulting in significant metabolic alterations that increase the risk of developing metabolic syndrome-a cluster of conditions including central obesity, insulin resistance, dyslipidemia, and hypertension. Traditional interventions such as hormone replacement therapy carry potential adverse effects, and lifestyle modifications alone may not suffice for all women. This review explores the potential role of palmitoylethanolamide (PEA), an endogenous fatty acid amide, in managing metabolic syndrome during the postmenopausal period. PEA primarily acts by activating peroxisome proliferator-activated receptor-alpha (PPAR-α), influencing lipid metabolism, energy homeostasis, and inflammation. Evidence indicates that PEA may promote the browning of white adipocytes, enhancing energy expenditure and reducing adiposity. It also improves lipid profiles by boosting fatty acid oxidation and decreasing lipid synthesis, potentially lowering low-density lipoprotein cholesterol and triglyceride levels while increasing high-density lipoprotein cholesterol. Additionally, the anti-inflammatory properties of PEA enhance insulin sensitivity by reducing pro-inflammatory cytokines that interfere with insulin signaling. PEA may aid in weight management by influencing appetite regulation and improving leptin sensitivity. Furthermore, its neuroprotective effects may address the mood disturbances and cognitive decline associated with menopause. Given these multifaceted biological activities and a favorable safety profile, PEA may represent a promising non-pharmacological supplement for managing metabolic syndrome in postmenopausal women. However, further large-scale clinical studies are necessary to establish its efficacy, optimal dosing, and long-term safety. If validated, PEA could become an integral part of strategies to improve metabolic and neuropsychological health outcomes in this population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677032PMC
http://dx.doi.org/10.3390/nu16244313DOI Listing

Publication Analysis

Top Keywords

metabolic syndrome
12
fatty acid
8
managing metabolic
8
syndrome postmenopausal
8
lipoprotein cholesterol
8
pea
7
metabolic
6
palmitoylethanolamide postmenopausal
4
postmenopausal metabolic
4
syndrome current
4

Similar Publications

Unlabelled: One of the principles of prevention and non-drug treatment of liver diseases, including hepatitis of various etiologies, is the normalization of the diet, including the use of daily diet foods with physiologically active ingredients, in particular betulin, which helps to reduce metabolic and oxidative processes within liver cells. The aim of the work was to evaluate the in vivo effect of triterpene alcohol betulin Roth isolated from the bark of birch Betula pendula Roth. added to fat-containing products (for example, mayonnaise) on the biochemical parameters of blood and the morphological structure of the liver of rats with initiated acute toxic hepatitis.

View Article and Find Full Text PDF

Purpose Of Review: To provide a narrative overview of trends and disparities in the cardiometabolic profiles of U.S. adults by synthesizing findings from nationally representative studies conducted between 1999 and 2020.

View Article and Find Full Text PDF

Context: The medications for metabolic syndromes are very minimal and the available are not effective and show adverse effects. There is a huge need for the development of effective and safe drugs to battle metabolic syndromes. In this context, our study aimed to decipher the key molecules from Artocarpus communis seed hexane fraction and their possible mechanism of action against metabolic syndrome.

View Article and Find Full Text PDF

This study aimed to evaluate the comparative efficacy of Myo-inositol (MI) and D-chiro-inositol (DCI) with metformin in enhancing ovarian function, promoting ovulation, and reducing perceived stress in patients with polycystic ovary syndrome (PCOS). Women with PCOS were identified using the Androgen Excess Society's criteria, and 60 participants were enrolled and divided equally into two groups. One group received a 40:1 ratio of MI plus DCI, while the other received metformin for a 12-week period.

View Article and Find Full Text PDF

Background: In previous efforts, health-related quality of life (HRQoL) improved for individuals at high risk of type 2 diabetes and cardiovascular disease after participation in community-based lifestyle interventions (LI) with a moderate-to-vigorous physical activity (MVPA) movement goal.

Purpose: It is unknown whether HRQoL improves with LI when the primary movement goal is to reduce sedentary behavior. HRQoL changes were examined among adults with overweight and prediabetes and/or metabolic syndrome randomized to a 12-month Diabetes Prevention Program-based Group Lifestyle Balance (DPP-GLB) community LI work with goals of weight-loss and either increasing MVPA (DPP-GLB) or reducing sedentary time (GLB-SED).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!