The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.8% and 88.4%, values comparable with the results of the chemical control Vydate 5G. The F-22BK/2 and F-22BK/4 treatments showed the best results, increasing the fruit weight by 8.6% and 9.9%, in addition to increasing the tomato yield by 5.0% and 13.3%. These strains contributed to an increase in sugar content, whereas the concentration of vitamin C was reduced in the F-294 and Fitoverm treatments, indicating a high level of oxidative stress in the latter treatments. The results of this study confirm the prospects of using biological nematicides against phytoparasitic nematodes, which will not only enable effective control of their population but also improve the quality of agricultural products, minimizing harm to the environment and human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676876PMC
http://dx.doi.org/10.3390/microorganisms12122586DOI Listing

Publication Analysis

Top Keywords

microorganism strains
8
biological preparations
8
quality tomato
8
crop structure
8
strains environmentally
4
environmentally friendly
4
biological
4
friendly biological
4
preparations chitwood
4
chitwood 1949
4

Similar Publications

Unveiling remarkable bacterial diversity trapped by cowpea (Vigna unguiculata) nodules inoculated with soils from indigenous lands in Central-Western Brazil.

Braz J Microbiol

January 2025

Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil.

Cowpea (Vigna unguiculata) is recognized as a promiscuous legume in its symbiotic relationships with rhizobia, capable of forming associations with a wide range of bacterial species. Our study focused on assessing the diversity of bacterial strains present in cowpea nodules when inoculated with soils from six indigenous lands of Mato Grosso do Sul state, Central-Western Brazil, comprising the Cerrado and the Pantanal biomes, which are known for their rich diversity. The DNA profiles (BOX-PCR) of 89 strains indicated great genetic diversity, with 20 groups and 23 strains occupying single positions, and all strains grouped at a final similarity level of only 25%.

View Article and Find Full Text PDF

The GacS/GacA two-component system strongly regulates antimicrobial competition mechanisms of MFE01 strain.

J Bacteriol

January 2025

Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France.

Unlabelled: MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of gene by the transposon was insufficient to explain these phenotypes.

View Article and Find Full Text PDF

Mycobacterium abscessus complex (MABSC) comprises a group of environmental microorganisms, which are a concerning cause of opportunistic respiratory infections in patients with cystic fibrosis or bronchiectasis. Only 45.6% of MABSC treatments are successful, and therefore this is a need to discover new antimicrobials that can treat these pathogens.

View Article and Find Full Text PDF

High-throughput screening strategies for plastic-depolymerizing enzymes.

Trends Biotechnol

January 2025

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China. Electronic address:

A multitude of plastic-depolymerizing microorganisms and enzymes have been discovered in the plastisphere. Identifying and engineering such microbial strains and enzymes necessitate robust and high-throughput screening strategies for developing effective microbial solutions to counter the plastic accumulation problem and decouple the reliance on fossil resources. This review covers new methods and approaches for the effective high-throughput screening of depolymerizing enzymes for various plastics, such as polyethylene terephthalate (PET), polyurethane (PU), and polylactic acid (PLA).

View Article and Find Full Text PDF

The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!