Integrons, which are genetic components commonly found in bacteria, possess the remarkable capacity to capture gene cassettes, incorporate them into their structure, and thereby contribute to an increase in genomic complexity and phenotypic diversity. This adaptive mechanism allows integrons to play a significant role in acquiring, expressing, and spreading antibiotic resistance genes in the modern age. To assess the current challenges posed by integrons, it is necessary to have a thorough understanding of their characteristics. This review aims to elucidate the structure and evolutionary history of integrons, highlighting how the use of antibiotics has led to the preferential selection of integrons in various environments. Additionally, it explores their current involvement in antibiotic resistance and their dissemination across diverse settings, while considering potential transmission factors and routes. This review delves into the arrangement of gene cassettes within integrons, their ability to rearrange, the mechanisms governing their expression, and the process of excision. Furthermore, this study examines the presence of clinically relevant integrons in a wide range of environmental sources, shedding light on how anthropogenic influences contribute to their propagation into the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676243 | PMC |
http://dx.doi.org/10.3390/microorganisms12122579 | DOI Listing |
PLoS One
January 2025
Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Salmonella Dublin is a serovar that causes severe infections and cattle. Despite the importance of this agent, research on achieving its elimination from dairy farms is limited, which complicates risk mitigation and control efforts. This study thus aimed to assess the prevalence of S.
View Article and Find Full Text PDFAm J Health Syst Pharm
January 2025
Pharmacotherapy Department, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, USA.
Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
View Article and Find Full Text PDFDrugs
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.
View Article and Find Full Text PDFPaediatr Drugs
January 2025
Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Despite significant global reductions in cases of pneumonia during the last 3 decades, pneumonia remains the leading cause of post-neonatal mortality in children aged <5 years. Beyond the immediate disease burden it imposes, pneumonia contributes to long-term morbidity, including lung function deficits and bronchiectasis. Viruses are the most common cause of childhood pneumonia, but bacteria also play a crucial role.
View Article and Find Full Text PDFActa Microbiol Immunol Hung
January 2025
1Department of Biomedical Sciences, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece.
The spread of NDM-1-harboring Klebsiella pneumoniae is a worldwide concern. In this study the whole-genome sequence (WGS) of a carbapenem- and colistin-resistant K. pneumoniae 838Gr strain is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!