The human respiratory tract is colonized by a complex microbial community that helps maintain respiratory health and plays a crucial role in defending the host from infections. Respiratory viruses have been demonstrated to alter microbiota composition, resulting in opportunistic species expansion, and increasing the disease severity and host susceptibility to bacterial co-infections. This study aims to examine the compositional differences in the nasal microbiota between SARS-CoV-2-infected and non-infected patients. We conducted Oxford Nanopore full-length 16S rRNA sequencing on nasal swabs from 94 COVID-19 negative and 85 COVID-19 positive patients collected during the SARS-CoV-2 pandemic in Malta. Our analysis identified significant alpha and beta diversity differences in the nasal microbiota composition among our study groups. We observed a trend toward decreased microbial richness and evenness in the COVID-Positive cohort with and increased abundance of common nasal opportunistic species including , , , , and . The findings from this study are in line with previously published papers identifying key alterations in the nasal microbiota composition associated with SARS-CoV-2 infection. Understanding these microbiome-driven mechanisms could present novel prognostic markers or offer new approaches for disease prevention and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679825 | PMC |
http://dx.doi.org/10.3390/microorganisms12122570 | DOI Listing |
PLoS One
January 2025
Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, PR China.
Objective: This study aimed to evaluate the positive effects on anti-oxidation, anti-inflammation, and microbial composition optimization of diabetic mice using tussah (Antheraea pernyi) silk fibroin peptides (TSFP), providing the theoretical foundation for making the use of silk resources of A. pernyi and incorporating as a supplement into the hypoglycemic foods.
Method: The animal model of diabetes was established successfully.
J Agric Food Chem
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Plant Protection Research Institute, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China.
Microplastics (MPs) and pesticides are identified as two environmental pollutants. In the present study, we showed evidence of toxic effects on honey bees from chronic oral exposure to food containing difenoconazole alone (Dif) and in a binary mixture with polystyrene (PS)-MPs (Dif + PS). We observed a disrupted gut microbial community structure in bees after difenoconazole exposure, and the gut microbiota structure richness increased at the phylum and genus levels in Dif + PS group.
View Article and Find Full Text PDFIET Syst Biol
January 2025
Department of Anorectal, Shanghai Municipal Hospital of Traditional Chinese Medicine (Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, China.
The herbal sitz bath formula, as a complementary therapy, effectively alleviates postoperative wound pain and accelerates healing time in patients with perianal abscesses. To investigate its mechanism of action, this study conducted 16S rRNA gene sequencing and bioinformatics analysis on wound exudate samples from patients after perianal abscess surgery. Patients were randomly divided into two groups: one receiving the herbal sitz bath as an adjunctive therapy and the other without this adjunctive therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!